

STE 80721-1

TS3000 SCARA / LINEAR system
TS3100 SCARA / LINEAR system
TSL3000 SCARA system

INSTRUCTION MANUAL

ROBOT LANGUAGE MANUAL

Notice
• Make sure that this instruction manual is delivered to the

final user of Toshiba Machine's industrial robot.

• Before operating the industrial robot, read through and
completely understand this manual.

• After reading through this manual, keep it nearby for future
reference.

TOSHIBA MACHINE CO., LTD.

 ROBOT LANGUAGE MANUALseries Robot Controller

Copyright 2012 by Toshiba Machine Co., Ltd.
All rights reserved.

No part of this document may be reproduced in any form without obtaining prior written
permission from Toshiba Machine Co., Ltd.

The information contained in this manual is subject to change without prior notice to
effect improvements.

STE 80721
– a –

ROBOT LANGUAGE MANUALseries Robot Controller

Preface

This manual explains the SCOL robot language, commands and programming
procedures as they apply to Toshiba Machine’s TS series system robot controller.
SCOL stands for "Symbolic Code Language for Robots" and is a robot language made
up of various commands used to control the robot. By using these commands, it is
possible to create programs to make the robot do what you want.
This manual is directed at those who have never written a robot program, and at those
who have much programming experience. However, this manual only covers SCOL
robot language. For the outline and operating method of the TS series system robot
controllers, please refer to the following manuals:

 Startup Manual
 Operator’s Manual

This manual is organized as follows:

[1] An Outline of Robot Language
 This section explains the connection between robot language and robot movement,

and presents a rough outline of commands used in robot language. Be sure to
read this section in order to get a grasp of the fundamentals of robot language.

[2] Writing Programs in Robot Language

 This section describes various rules for writing a program with robot language. Be
sure to read this section before starting to write your own programs.

[3] Explanation of Robot Commands
 This section details what each command means and does. The commands are

listed in alphabetical order for your convenience. This section will come in useful
when you write programs on your own.

[4] Program Examples
 This section contains various examples of robot language programs. Be sure to

use this section for reference when writing your own programs.

[5] Programming Hints and Warnings
 This section explains timing considerations, things not to do, and things to watch

out for when writing a program. Be sure to read it before beginning work on your
own program. Also, be sure to look this section over should your program not be
working the way you intended.

STE 80721
– b –

ROBOT LANGUAGE MANUALseries Robot Controller

Table of Contents

 Page

Section 1 An Outline of Robot Language ... 1-1
 1.1 Robot Movement ... 1-1
 1.2 Robot Language .. 1-2
 1.3 Types of Commands.. 1-3

Section 2 Writing Programs in Robot Language... 2-1
 2.1 Program Configuration... 2-1
 2.1.1 Files.. 2-1
 2.1.2 Program.. 2-1
 2.1.3 Positional Data ... 2-2
 2.2 Character Set... 2-2
 2.3 Identifiers ... 2-3
 2.4 Variables and Constants .. 2-4
 2.4.1 Scalar Data... 2-4
 2.4.2 Vector Data... 2-7
 2.4.3 System Variables.. 2-9
 2.4.4 System Constants .. 2-11
 2.5 Expressions ... 2-12
 2.5.1 Computational Expressions.. 2-12
 2.5.2 Logical Expressions.. 2-18
 2.6 Labels .. 2-18
 2.7 Remarks and Comments ... 2-19
 2.8 Programs ... 2-20
 2.8.1 Program Declaration... 2-20
 2.8.2 Subprograms.. 2-21
 2.8.3 Library .. 2-23
 2.8.4 Multitask Processing... 2-26
 2.8.5 Global Variable Definition ... 2-31
 2.8.6 Array Type Variable .. 2-32

Section 3 Explanation of Robot Commands... 3-1
 3.1 Command Explanations... 3-1
 3.2 Explanation of Commands... 3-8

STE 80721
– c –

ROBOT LANGUAGE MANUALseries Robot Controller

 Page

Section 4 Program Examples ... 4-1

Section 5 Programming Hints and Warnings.. 5-1
 5.1 Program Execution Timing... 5-1
 5.1.1 Arm Movement and Signal I/O Timing 5-1
 5.1.2 Synchronization of Arm Movement and Program Execution... 5-3
 5.1.3 DELAY Command and WAIT Command 5-5
 5.2 Things Not to Do When Programming ... 5-8
 5.2.1 Variables... 5-8
 5.3 Things to Watch Out for When Writing a Program............................... 5-9
 5.3.1 Types of Commands... 5-9
 5.3.2 Robot Coordinate Systems... 5-11
 5.3.3 Short-Cut Movement .. 5-19
 5.3.4 Robot Configuration.. 5-25
 5.3.5 Data Blocks .. 5-27
 5.3.6 Global Data Block... 5-31
 5.3.7 Robot Movement Speed... 5-33

Appendix A List of Commands... A-1

Appendix B List of Reserved Words .. A-5

Appendix C Contents of Library File (SCOL.LIB) ... A-6

Appendix D Domains and Ranges of Calculator Functions A-9

Appendix E How to Read Symbols .. A-10

Appendix F List of Compile Errors ... A-12

Appendix G Dynamic Link Library .. A-22
 Appendix G.1 Palletizing Library... A-22

Appendix H SCOL Program Language Executing Stop of Pre-Reading A-32

STE 80721
– d –

 ROBOT LANGUAGE MANUALseries Robot Controller

Section 1

An Outline of Robot Language

This section describes the connection between robot language and robot movement,
and presents a rough outline of commands used in robot language.

1.1 Robot Movement

 Robots do work in place of people. For example, let’s say that somebody has to
attach a part to a workpiece coming down a conveyor. The employee takes a part
from a parts bin and attaches the part to a workpiece transported to his or her
station by a conveyor. If we were to set up a robot to do this work instead, we
would have an arrangement something like that shown in Figure 1.1.

 In Fig. 1.1, the robot grabs a part from the parts feeder and attaches the part to a
workpiece coming down the conveyor. Considering this work from the point of view
of the robot, we would come up with a diagram like that of Figure 1.2. In this figure,
the robot first moves straight down from Point B, and at Point A it grabs a part.
After grabbing the part, the robot moves back up from Point A to Point B. From
Point B, the robot moves the part to Point C, which is directly above the part
attachment location Point D. The robot then drops down from Point C to Point D,
and attaches the part to the workpiece. When the robot is finished attaching the
part, it moves back up to Point C, and then finally back to Point B. This completes
one work cycle.

STE 80721
– 1-1 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Parts feeder
Workpiece

Conveyor

Fig. 1.1 Assembly work

B: Position just above A C: Position just above D

A: Position where robot
grips a part.

D: Position where a part
is mounted.

Fig. 1.2 Robot movement

STE 80721
– 1-2 –

 ROBOT LANGUAGE MANUALseries Robot Controller

1.2 Robot Language

 Robots do assembly work and other tasks in place of people. However, someone
still has to teach the robot what to do.

 Robots will only do what you tell them to do, and it's important to tell them exactly
what you want it to do.

 Telling a robot what to do is called "teaching." Making a robot do what you taught it
to do is called "playback." Of course, this only applies to what are called "playback
robots," which repeat (or playback) the movements you instructed the robot when
teaching.

 There are various ways to teach a robot what to do. One is a method of making a
robot do a job in order. For example, when carrying out painting and spot welding
work, someone teaches a robot as he does it. The robot does the work as it is
moving along a taught motion.

 In order to achieve complicated work, however, we need change robot motion
according to the states of peripheral equipment. As understood by the assembling
example, there may be problems with change in attachment parts in response to
types of workpieces carried by a conveyor, or with repeated attachment and
detachment of the parts when mis-attachment occurs. The robot needs response to
such circumstances that occur around the robot. Thus we must provide a method
how the robot responds to various circumstances.

 A language used for writing robot movement programs is called "Robot Language".
A robot task expressed in the robot language is referred to as "Program", and a task
to create the program is called "Programming". TS series employ the SCOL
Language (which stands for Symbolic Code Language for robot) as our unique
robot language. The example of the assembly work described in the previous
paragraph can be expressed in the SCOL Language as shown below.

STE 80721
– 1-3 –

 ROBOT LANGUAGE MANUALseries Robot Controller

PROGRAM ASSEMBLY

 MOVE B Move to Point B.
 OPEN1 Open Hand 1.
 MOVE A Move to Point A.
 CLOSE1 Close Hand 1.
 DELAY 0.5 Wait 0.5 seconds before grabbing the part.
 MOVE B Move to Point B.
 MOVE C Move to Point C.
 MOVE D Move to Point D.
 OPEN1 Open Hand 1.
 DELAY 0.5 Wait 0.5 seconds before letting go off the part.
 MOVE C Move to Point C.
 MOVE B Move to Point B.
END

 The word PROGRAM marks the beginning of a program and the word END marks
the end of a program. The name of this particular program is ASSEMBLY. MOVE
A means to move to Point A. OPEN 1 and CLOSE 1 mean to, respectively, open
and close Hand 1. (There are two hands.) DELAY 0.5 means not to do anything
for 0.5 seconds. Furthermore, the locations of Points A, B, C and D are defined
(taught) beforehand by physically guiding the robot (in the teaching mode) to these
points.

 Thus we can express robot tasks in SCOL by arranging movement commands that
are given to the robot in sequence for achieving the taught tasks.

STE 80721
– 1-4 –

 ROBOT LANGUAGE MANUALseries Robot Controller

1.3 Types of Commands

 In the previous section, we saw how SCOL is used to express the action of the robot.
Here, we explain a little bit more about SCOL commands themselves.

 In addition to commands like "MOVE A" which actually move the robot, there are
many other commands which do such things as send signals to external equipment
or direct the robot to do the same thing over and over again. Table 1.1 presents a
list of SCOL commands.

 All SCOL commands can be roughly classified into one of six categories.

 (1) Movement control commands

 These commands move the robot. Commands which temporarily stop the
robot, interrupt movement, or restart the robot are also included in this category.
Commands which actually move the robot are called movement commands.

 (2) Program control commands

 Program control commands control the execution of the program by doing such
things as executing certain parts of the program in accordance with external
signals or causing portions of the program to be carried out repeatedly.

 (3) I/O (Input/output) control commands

 These commands are used to read in (input) or send out (output) signals to and
from external equipment. Data input/output of hand open/close
communication channel are included in the I/O control command.

 (4) Movement condition commands

 These commands are used to specify the configuration and speed of various
joints of the robot while it is moving.

 (5) Calculator commands

 These commands are used to invoke (use) mathematical functions such as the
trigonometric functions and the square root function.

STE 80721
– 1-5 –

 ROBOT LANGUAGE MANUALseries Robot Controller

 (6) Movement reference commands

 These commands are used to reference and check the movement of the robot.
For example, these commands could be used to determine what percentage of
a certain motion has been completed at a certain time. They also include
commands for setting of the timer used during program execution and
referencing to robot operating mode.
These commands, in combination with other commands, are used to output
signals to the external equipment when the robot has completed up to 70% of
the given task, or to branch the program when movement of the robot is
recognized as an error if the movement is not finished within a specified time.
By combining these commands, tasks suitable for the robot can be
programmed.

Table 1.1 Functions of the SCOL language

Type Purpose Commands

Movement control
commands

(1) Move the robot.

MOVE, MOVES, MOVEC,
MOVEA, MOVE1, READY
MOVEJ

(2) Temporarily stop the robot. DELAY

(3) Move the robot hand.

OPEN1, OPENI1, OPEN2,
OPENI2, CLOSE1,
CLOSEI1, CLOSE2,
CLOSEI2

(4) Interrupt or restart operation. BREAK, PAUSE, RESUME

Program control
commands

(1) Monitor external signals,
timers, etc.

ON ~ DO ~, IGNORE
IF ~ THEN ~ ELSE,
WAIT, TIMER

(2) Control program execution.

PROGRAM, END, GOTO,
RCYCLE, RETURN, FOR
~ TO ~ STEP ~ NEXT,
STOP
TASK, KILL, SWITCH,
TID, MAXTASK

(3) Remarks and comments on
program

REMARK

STE 80721
– 1-6 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Type Purpose Commands

(1) Input and output of external
signals.

DIN, DOUT,
PULOUT, RESET,
BCDIN, BCDOUT

I/O control
commands

(2) Input and output of
communication data.

PRINT, INPUT

Movement condition
commands

(1) Specify conditions for
controlling robot movement.

CONFIG, ACCUR, ACCEL,
DECEL, SPEED, PASS,
TORQUE, GAIN, ENABLE,
SETGAIN, DISABLE,
NOWAIT, PAYLOAD,
FREELOAD, SWITCH,
MOVESYNC

Palletizing command (1) Load a library. LOADLIB

(2) Initialize a pallet. INITPLT

(3) Move a pallet to the
specified position.

MOVEPLT

Calculator functions (1) Perform calculations for real
numbers.

SIN, COS, TAN, ASIN,
ACOS, ATAN, ATAN2,
SQRT, ABS, SGN, INT,
REAL, LN, MOD, LOG10,
EXP, AND, OR, NOT

(2) Perform calculations
involving positional and
coordinate data.

HERE, DEST, POINT,
TRANS

(3) Use an array. DIM, AS

(1) Check robot movement. MOTION, MOTIONT,
REMAIN, REMAINT

Movement reference
commands

(2) Check system movement. MODE, CONT, CYCLE,
SEGMENT

(3) Assign a coordinate system. TOOL, BASE, WORK

Others (1) Define a variable. GLOBAL, DATA, END

(2) Restore an updated value in
the program file.

RESTORE

(3) Save data at power OFF. SAVEEND

STE 80721
– 1-7 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Section 2

Writing Programs in Robot Language

In Section 1, we got a rough idea of what a robot language is and how it works. Now,
in Section 2, we will describe how to write a program in robot language.

2.1 Program Configuration

 Below we present a general outline of program configuration with the SCOL
language.

2.1.1 Files

 In order to get the robot to perform a task, you need both a program written in robot
language and positional data for use by the program. That is, for the TS series,
you have to have a matched set of a program (or programs) and positional data.
This matched set is called a file. Program execution and editing are on the file
basis.

2.1.2 Program

 A program is an expression using robot language of a set of operations performed
by the robot. A program can also be called and used by another program. It is
possible preparing frequently-used operations and preset operations as a single
program and calling these programs when needed. Programs that are called in this
way are called subprograms, and the program that calls the subprogram is called a
main program.

 A single file can include multiple programs. When a program is executed, unless
specified otherwise, the program at the start of the file is executed as the main
program. When a subprogram is called, the subprogram must be located in the
same file as the main program. Also, even if multiple programs are contained in a
file, all of these programs are not executed in order. Instead, the programs are
executed until the end of the main program as a single unit.

 Also, multiple programs can be executed simultaneously using the TASK command
(multitask execution). For details on multitask execution, see Para. 2.8 “Programs.”
Programs are edited from the teach pendant using the program editor function of the
controller. For details on how to use the editor, see the Operator’s Manual.

 STE 80721
– 2-1 –

 ROBOT LANGUAGE MANUALseries Robot Controller

2.1.3 Positional Data

 Positional data for use in a program (or programs) must be placed in the same file
as the program (or programs). Positional data in a file can be accessed (used) by
all programs in that file. However, positional data in a file cannot be accessed by
any programs not in that file.

 Positional data is "fed" to the robot using the data editor function of the controller.
See the Operator’s Manual for information on how to use the data editor.

2.2 Character Set

 The SCOL character set is made up of alphanumeric characters and the following
special symbols.

 Alphanumeric characters

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
1 2 3 4 5 6 7 8 9 0

 Special symbols

“ ‘ () + – * / , . < > =
! [] () % ^ & ?
space character

 With the exception almost all of the small letters, these characters and symbols can
all be input from the teach pendant. When executing a program, the robot makes
no distinction between capital letters and small letters. For reading method of
symbols, see "Appendix E."

 STE 80721
– 2-2 –

 ROBOT LANGUAGE MANUALseries Robot Controller

2.3 Identifiers

 In the SCOL robot language, identifiers are used to express commands, program
names, variable names, and labels (which are used to specify program branches).
Identifiers must start with an alphabetic character. There is no particular limit on
length, although the robot will only differentiate the first ten alphanumeric characters.
The robot does not care whether you use capital or small letters, since it will treat
them the same anyway. Also, special symbols and spaces cannot be used in
identifiers.

 Special characters or spaces are used to separate identifiers.

Example:

TOSHIBAROB
Toshibarob
TOHIBAROBOT

 The three identifiers above are all treated as the same identifier “TOSHIBAROB”.

 Some identifiers have already been defined by the SCOL language itself. These
are called reserved words, and you as the programmer cannot use them for any
other purpose except for that already defined. A list of reserved words is shown in
Appendix B. In addition to SCOL commands, you will find words used in the
computer system and words set assigned for future expansion.

 Do not use identifiers with the same name for different meanings. For example,
when creating a program, do not use the same identifier for both the program name
and variable name.

 STE 80721
– 2-3 –

 ROBOT LANGUAGE MANUALseries Robot Controller

2.4 Variables and Constants

 Not all data takes the same form, and these different forms of data are called data
types. Scalar type (integer type, real number type and character string) and vector
type (position type, coordinate type and load type) can be used in the SCOL
language. Variables are divided into global variable and auto variable according to
the definition method. All taught data and variable defined in the area between
GLOBAL and END are called the global variable. These variables can be referred
and changed from any part of the program. For all data types of global variables,
the array can be declared. For descriptions of global variable and array, see Para.
2.8.5.

 The work area in the controller is used for all data. The defined value is substituted
for the global variables other than the array without a specific initial value at the start
of the program. If the value is entered for the variable during program execution,
only the work area is changed. If the power of controller is turned off, execution file
is reselected or the file is edited, work area is reset by the variable’s initial value
saved in the file and the changed value is lost accordingly. This is also applicable
for change of the taught data. If the data in the file is to be overwritten, the
RESTORE command should be executed in the program.

2.4.1 Scalar Data

 There are three types of scalar data, i.e., integers, real numbers and character
strings. Scalar type auto variables can only be used in the program in which they
were declared. That means that if you use a variable with the same name in
another program, the two variables will be completely independent and have nothing
to do with each other. Therefore, when passing data from one program to another,
make it a point to, if possible, redefine the variable as the scalar type global variable
or declare the arguments in the program. See Para. 2.8 "Programming."

 (1) Integer data

 (a) Constants
 SCOL can handle integer values ("whole numbers") in the range of

–2147483648 to + 2147483647. When an integer is used as a constant in
a program, if it is positive, directly describe the value; if it is negative,
describe the value following the – symbol. If a value of 11-digit or over is
entered by the INPUT command, an error occurs.

 STE 80721
– 2-4 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Example:
0

234
–39208

5963

 (b) Variables
 Variables are distinguished by identifiers and can be in the range of –

2147483648 to + ~147483647, just as above. The data type of a variable
is determined by the data type of the first number you assign to that variable.
For example, if the first thing you assign to a variable is an integer, all other
numbers substituted into that variable will become integers. That means
that if you later try to insert a real number into this variable, the controller will
chop off all the decimal places and treat what is left as an integer.

 The variable comes in two types; the global variable which is valid in the
entire program and the general variable which is valid in a part of the
program. The global variable can be changed from any part of the
program.

 (c) Logical values
 Logical values are used in the program when making conditional judgments.

Logical expressions and commands such as DIN (which check input signals)
return logical values.

 A logical value may have one of two values; TRUE or FALSE. Internally,
logical values are treated as integers with 1 being TRUE and 0 being
FALSE.

 Note: Strictly speaking, 0 is considered as FALSE and everything else is
considered as TRUE.

 (2) Real data
 With SCOL, numbers are treated as real types with the exception of certain

special cases.

 (a) Constants
 SCOL can handle real numbers having an absolute value in the range of

approximately 5.87×10-39 (2-127) to 6.80×1038 {(223-1)×2106 }. The number
significant digits for the mantissa [the mantissa is the part of the number to
the right of the decimal point) is approximately 7 in Base 10. (The precision
is 223).

 STE 80721
– 2-5 –

 ROBOT LANGUAGE MANUALseries Robot Controller

The number of allowable digits is 9 for the integer and 3 for the decimal.
If a value consisting of more than these digits is entered by the INPUT
command, an error occurs.

 When a real number is used in the program, if it is positive, directly describe
the value; if it is negative, describe the value following the – symbol.

 When the decimal part is 0, it is omissible. However, when the decimal
point is omitted, the data are treated as integer type data. In addition, since
the integer part cannot be omitted, even if the absolute value of a numeric
value is less than 1, it is necessary to designate 0 to the integer part.

 Example:
 1234.567
 –28.16
 0.00985
 1234567.
 –369.

 As mentioned above, the precision of the computer is somewhat limited
when handling decimal values. Usually this is no problem if the number of
decimal places is reasonable. Therefore, when working with the robot, try
to use the following as the minimum set units.

Distance (X, Y, and Z data) 0.001 mm
Angles (C data) 0.001 deg.
Time 0.01 sec.
Rates (Speed, torque, etc.) 1 %
Mass 0.01 kg
Inertia 0.01kg.m

 (b) Variables
 Variables are distinguished by identifiers and have the same range as listed

above for constants. The data type of a variable is determined by the data
type of the first number you assign to that variable. For example, if the first
thing you assign to a variable is a real number, that variable will become a
real type.

 STE 80721
– 2-6 –

 ROBOT LANGUAGE MANUALseries Robot Controller

 (3) Character strings
 Character strings can only handle constants. They are expressed by placing

one or more characters between quotation marks.

 Example: "SCOL MESSAGE"

2.4.2 Vector Data

 As opposed to scalar-type data which only holds one data element, vector-type data
holds multiple data elements. There are three types of vector data in SCOL;
positional vectors, coordinate vectors and load vectors.

 Vector-type data can be expressed by enclosing one to five elements in brackets
{ }. In addition to positional vectors, coordinate vectors, and load vectors,
vector-type data is also specified for TORQUE and GAIN commands by enclosing in
brackets { }.

 Vector type data other than the vector type global variable such as data taught by
the data editor are temporarily stored in the working area of the controller. The
data are not created in the file. The vector type variable can be used only in the
declared program. Thus, even if the same variable is used in another program, the
content of the former does not accord with that of the latter. When data are passed
from one program to another program, the passed data should be redefined as the
vector type global variable or it should be an argument. For details of arguments,
see "2.8.2 Subprograms."

 (1) Positional data
 Positional data is used by the robot to describe positions. Positional vectors

have the following format.

(X, Y, Z, C, T, <configuration>)

 X, Y, Z, C and T are coordinate values represented by real numbers. Units
are in millimeters or degrees.

 <Configuration> holds an integer from 0 to 2 that describes the set-up
configuration of the system.

0 ... Free (Set-up of the system is undefined)
1 ... Left hand system
2 ... Right hand system

 STE 80721
– 2-7 –

 ROBOT LANGUAGE MANUALseries Robot Controller

 (2) Coordinate data
 Coordinate data is used by the robot to specify coordinate systems.

Coordinate vectors have the following format:

 (X, Y, Z, C)

 X, Y, Z and C are coordinate values represented by real numbers. Units are
in millimeters or degrees.

 Coordinate vectors allow one to convert between different coordinate systems
as shown in Figure 2.1. In the figure, we have an original coordinate system
X, Y and Z. Then, with data provided by a coordinate vector (x, y, z, c), the
original coordinate system is shifted parallel along its axes by the amounts x, y
and z. This forms a new coordinate system centered about 0'. Once this is
done, we twist the new coordinate system around the Z' axis by an amount c.
We are now finished orientating our new coordinate system X', Y', and Z'.

Z

X

Y

Z’

X’

Y’

O

O’

x

y

z

a

b

c

Fig. 2.1 Coordinate transformation

 STE 80721
– 2-8 –

 ROBOT LANGUAGE MANUALseries Robot Controller

 (3) Load data
Load data is used to define the physical loads acting on the end effector
(hand) of the robot. Load vectors have the following format.

{<mass>, <center of gravity offset>}

<mass> is the mass of the load acting on the tip of the robot hand. Units are
in kg.

<center of gravity offset> is the amount representing the distance between the
center of gravity applied to the tip of the robot hand and the center of the tool
flange of the robot (unit: mm).

2.4.3 System Variables

The SCOL language provides special variables that are used in the programs to
specify and referent robot operating conditions. These variables are called system
variables. Just like other variables, you can refer to these variables in the program,
change their value, etc. However, you have to be careful when setting or
substituting values into system variables since doing this will directly effect robot
operating conditions.

A list of system variables is presented below in Table 2.1.

 STE 80721
– 2-9 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Table 2.1 List of system variables

Name Description Effective
values

Initial
value

Data type

CONFIG Robot configuration 0, 1, 2 0 Integer type
ACCUR Positioning accuracy 0, 1 1 Integer type
ACCEL Acceleration (during

acceleration)
0 ~ max % 100 Integer type

DECEL Deceleration (during
deceleration)

0 ~ max % 100 Integer type

SPEED Speed of movement 0 ~ max % 100 Integer type
PASS Short-cut movement

parameter
0 ~ 100% 100 Integer type

TORQUE Maximum torque on
each axis

0 ~ max % 300 Vector type

GAIN Servo gain on each
axis

0.1 1 Vector type

TOOL Tool coordinates 0 Coordinate
type

BASE Base coordinates 0 Coordinate
type

WORK Work coordinates 0 Coordinate
type

TIMER Timer 0 ~ – Real type
ERROR Error information – Integer type
PLAYLOAD Load on the robot 0 ~ 0 Load type
SWITCH Multitask 0, 1 1 Integer type
TID Task number 1 ~ – Integer type
PLCDATAR1 ~ 8 Simplified PLC

interface
0 ~ 65535 0 Integer type

PLCDATAW1 ~ 8 Simplified PLC
interface

0 ~ 65535 0 Integer type

 Note: Maximum values are set separately for each system.

Should you change the contents of a system variable related to movement control,
that change will not take effect until the next motion; it will have no effect at all on a
motion in progress at the time; However, by using a WITH construct, it is possible
to temporarily set a system variable with regards to one motion command. For
example:

MOVE Al WITH SPEED = 50

 STE 80721
– 2-10 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Furthermore, be warned that SCOL does not check to see whether a value
substituted into a system variable is within the permissible range. Should the value
not be in the permissible range, the system sets a value according to the following
rules.

 • Should you try to insert a value less than the minimum permissible value, the
minimum permissible value will be entered in its place.

 • Should you try to insert a value greater than the maximum permissible value,
the maximum permissible value will be entered in its place.

See Section 3 for details on how to use system variables.

2.4.4 System Constants

In order to make programs easier to read (and thereby debug), SCOL provides the
system constants shown in Table 2.2. These names can be substituted into the
program in place of numbers in order to make it easier to see what you are doing.
However, be sure to use them only in the locations specified in the Comments
column of Table 2.2.

Table 2.2 List of system constants

Name Value Comments (Locations for use)
FREE 0 In the system variable CONFIG
LEFTY 1 In the POINT command
RIGHTY 2
COARSE 0 In the system variable ACCUR
FINE 1
OFF 0 In the system variable GAIN
ON 1 In the SETGAIN command
PAI 3.141593 Pi value
CONT 0 In the MODE command
CYCLE 1
SEGMENT 2

 STE 80721
– 2-11 –

 ROBOT LANGUAGE MANUALseries Robot Controller

2.5 Expressions

This paragraph describes expressions provided by SCOL for substitution, calculation
and judgment.
In SCOL language, expressions can be not only used independently to perform
substitution and calculation, but also used within commands. Expressions include
computational expressions where the calculation result is substituted into a variable
and logical expressions that determine greater than/less than or true/false results.
The operands shown below can be used. Please note that execution result of 0/0 is
-1 and of 0 ^ 0 is 0 instead of an error as would normally be expected.

Table 2.3 Operands

Type Operand Function Example
Arithmetic
functions

^ Exponentiation A ^ B (A to the B power)
– Minus sign –A
*, / Multiplication,

division
A * B, A / B

+, – A + B, A – B
Addition,
subtraction

MOD A MOD B (The remainder when A is
divided by B.)

Remainder A = B (Puts the value of B into A.) =

Substitution

Relational
function

= = Equal A = = B
< >, > < Not equal A < > B, A > < B
< Less than A < B
> Greater than A > B
< =, = < Less than or equal A < = B, A = < B
> =, = > Greater than or

equal
A > = B, A = > B

Logical
operands

AND Logical product A AND B
OR Logical sum A OR B
NOT Negation NOT A

Functions SIN Sine SIN (A)
COS Cosine COS (A)
TAN Tangent TAN (A)
ASIN Arcsine ASIN (A)
ACOS Arccosine ACOS (A)

 STE 80721
– 2-12 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Type Operand Function Example

Functions ATAN Arctangent ATAN (A)
ATAN2 Arctangent ATAN2 (A, B) (Arctangent of A / B)
SQRT Square root SQRT (A)
ABS Absolute value ABS (A)
SGN

Sign

SGN (A) (Extract and return the
sign of A)

INT Changes number to
an integer.

INT (A)

Changes number to
a real number.

REAL REAL (A)

Natural logarithm LN LN (A)
Common logarithm LOG10 LOG10 (A)
Exponential base eEXP EXP (A)

Parentheses () may be used inside the expressions.

2.5.1 Computational Expressions

In the SCOL language, the results of computations on the right side of an equal sign
are placed on the left. Variables and constants may be used in the expressions.

 (1) Order of computational priority
In SCOL language, calculation is performed in the same order of priority as
regular computational operations. Specifically, operations are performed based
on the rules below.

• If the expression contains brackets, the operations inside the brackets are
performed first.

• Operations are performed in the order of assignment of negative signs,
calculation of exponents, multiplication and division (*, /), and addition and
subtraction (+, -).

• If two operations have the same priority, the operations are performed from
the left to the right of the expression.

For example:

a = b + c * d / (e –f) – g,

 STE 80721
– 2-13 –

 ROBOT LANGUAGE MANUALseries Robot Controller

The order of computation for the above expression is:

1. Calculate e – f. e–f
2. Calculate c * d. c * d
3. Divide c * d by e – f. (c * d) / (e – f)
4. Add the above result to b. b + (c * d) / (e – f)
5. Subtract g from the above result. (b + (c * d) / (e –f)) – g

Table 2.4 presents the order of computational priority for various operations.

Table 2.4 Order of computational priority

Priority Operation Operand Grouping

convention
High Parenthesis () Left to right

 Assignment of vector elements . Left to right

Low

Assignment of negative signs and
negations
Exponentiation
Multiplication, division, remainder
Addition, subtraction
Comparison

Equality, inequality
Logical product, logical sum
Substitution

–, NOT
^
*, /, MOD
+, –
<, >, < =, >
=, = <, = >
= =, < >, > <
AND, OR
=

Right to left
Left to right
Left to right
Left to right
Left to right

Left to right
Left to right
Right to left

Note: Explanation of grouping convention:

Left to right 1 + 2 – 3 is interpreted as (1 + 2) – 3.

Right to left NOT–3 is interpreted as NOT (–3).

 STE 80721
– 2-14 –

 ROBOT LANGUAGE MANUALseries Robot Controller

(2) Computation of scalar type data
Scalar type data can be used in calculations in combination with computational
operands. However, should even one number in an expression be a real
number, the output of that expression will also be a real number. Also, the
following functions will all return a real number.

SIN, COS, TAN, ASIN, ACOS, ATAN, ATAN2, SQRT, REAL, LN, LOG10, EXP

When the variable on the left side of the equation is an integer type and the
output of the calculation is not an integer, the output will be converted into an
integer before being assigned to the variable. Do not forget, however, that all
decimal points are chopped off when a real number is converted to an integer.
On the other hand, when converting from an integer to a real number, the
number of significant digits is limited. When you want to make it clear what
kind of data type you are dealing with, use the INT or REAL command.

Note that character strings cannot be used in calculations. Calculations may
be carried out between the elements of vector-type variables and scalar data.
In this case, an element specifier is appended to the end of a vector-type
variable to specify the element which is involved in the calculation. The value
of the element is then drawn out from the vector-type variable and used in the
calculation.

As element specifiers, ".X", ".Y", ".Z", ".C" and ".T" may be used. You may
also numerically specify the element position with ".1", ".2", ".3", ".4" and ".5."

Examples:

A = POINT1.X/25
GAIN={GAIN. 1,GAIN.2,0,0,0}

Note: You can only use this to return the value of an element from the inside
of a vector-type variable. You cannot change the value of the element
itself.

 STE 80721
– 2-15 –

 ROBOT LANGUAGE MANUALseries Robot Controller

 (3) Computation of vector-type data
You can add and subtract corresponding elements of two vectors.
Computation is a possible only between the same type variables. The
<CONFIG> element is not involved in the calculations but rather takes the
value of the variable substituted into it.

Example: Given the following two position vectors and two coordinate
vectors;

P1: (10, 20, 30, 40, 50, RIGHTY)
P2: (–5, 10, –15, 20, –25, LEFTY)
H1: (100, 50, –50, 0)
H2: (12, 34, 56, 78)

and performing the following operations,

P3 = P1 – P2
H3 = H1 – H2

we obtain:

P3: (15, 10, 45, 20, 75, RIGHTY)
H3: (88, 16, –106, –78)

Note: The <CONFIG> element in P3 is indeterminant.

 (4) Substitution into vector data types
The following methods are available to substitute (insert) a constant, a variable
or the result of a computation into an element of vector-type data.

 (a) Commands to convert a row of scalar-type data into vector-type data
A POINT command and a TRANS command are available to convert rows of
scalar data into a vector data. POINT converts scalar data into positional
vector data, and TRANS converts scalar data into coordinate vector data. If
an element is not included in the expression, that element is treated as 0
within the expression. For details on how to use these commands, see
"Section 3."

Example:

P1 = POINT(P2.X, P2.Y, P2.Z + 50, 0, 0)
H1 = H2 + TRANS(100, 100)

 STE 80721
– 2-16 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Generally, vector-type data declarations are made as shown below.

Positional data POINT (X, Y, Z, C, T, <CONFIG>)
Coordinate data TRANS (X, Y, Z, C)

X, Y, Z, C and T are coordinate values represented by real numbers. Units
are in millimeters or degrees.

<CONFIG> stands for "configuration" and holds an integer from 0 to 2 that is
used to describe the set-up of the system.

0 ... Free (Set-up of the system is undefined)
1 ... Left hand system
2 ... Right hand system

Any omitted elements are taken as "0".

Note 1: In order to make it clear just what kind of data type you are using,
always try to use the POINT command when creating positional type
data and the TRANS command when creating coordinate type data.

Note 2: When position data which have not been taught are used in a program
of the robot language, the position data are temporarily stored in the
controller memory. Thus, when the program is reset, the position data
are cleared. The position data are only valid in the program which uses
data. Therefore, to use the position data in a subprogram, it is
necessary to pass it as an argument. For details of arguments, see
"2.8.2 Subprograms."

Note 3: The substitution and reference to the array type data (type of variable
name [index number]) are dealt in the same manner as the original data
type (scalar type and vector type) of the array type data.

 STE 80721
– 2-17 –

 ROBOT LANGUAGE MANUALseries Robot Controller

2.5.2 Logical Expressions

With SCOL, logical expressions can be used in combination with the commands IF,
WAIT and ON. Also, six relational operands are available (<, >, < = (or = <), > = (or
= >), < > (or > <), and = =). Also, logical expressions may be combined using the
logical operands AND, OR and NOT. Scalar constants, scalar variables and the
results of calculations may be used as data in logical expressions.
When evaluating equivalence, use the "= =" sign and not the "=" sign. When
comparing real numbers, differences of 0.001 or less will be ignored.
Logical expressions will return an integer value of 1 if true and 0 if false. The
calculation result is an integer type number.

Examples:

1) IF K = =K2 * K3 THEN K = K2
ON MOTION > = 50 DO DOUT (1,2)

2) When IF J1 THEN GOTO TRUE1 ELSE GOTO FALSE1 is executed, If J1 is
an integer 0, or a real number with absolute value J1 is equal or less than
0.001, the comparison is considered as FALSE, then the program branches
off to FALSE1.
If J1 is a value other than an integer 0, or an real number with absolute
value J1 is greater than 0.001, the comparison is considered as TRUE, then
the program branches off to TRUE1.

2.6 Labels

With the SCOL language, program branches are specified by labels placed at the
beginning of the branch destination. When labeling a statement as a branch, put a
colon at the end of the identifier.

When directing the program to branch to another location with the GOTO command,
do not put a colon at the end of the label.

Program branching may only be carried out within a single program. You cannot
branch from one program to another. Also, you may use the same labels in
different programs, but you cannot use the same label in a single program.

Examples:

LOOP1: MOVE P1
GOTO LOOP1

 STE 80721
– 2-18 –

 ROBOT LANGUAGE MANUALseries Robot Controller

2.7 Remarks and Comments

The SCOL language allows you add comments to your program in order to make it
easier to understand (and debug). Comments can be entered by using the teach
pendant to type in whatever you want to say. Remarks and comments are written
in any one of the following formats.

(1) REMARK command
You can write what you want to say after a REMARK command. In the
REMARK command, everything written until the end of the line (until the [EXE]
key is pressed) is treated as a comment, and it is not executed as a program.
Because the REMARK command is an independent command, it cannot be
written after another command.

Example:

REMARK SCOL SAMPLE PROGRAM

(2) Single quotation mark
Text written after a single quotation mark (') is treated as a comment. This
method enables you to insert comments after other commands. Everything
written after the single quotation mark (') until the end of the line (until the [EXE]
key is pressed) is treated as a comment, and it is not executed as a program.

Example:

MOVE P1 'MOVES THE ROBOT TO P1

'*** SCOL COMMENT SAMPLE ***

 STE 80721
– 2-19 –

 ROBOT LANGUAGE MANUALseries Robot Controller

2.8 Programs

This paragraph describes SCOL programs.

2.8.1 Program Declaration

Declaration of a combination program of SCOL commands is written in the following
format.

PROGRAM <name of your program>
Contents of your program

END

A program is made up of everything from the PROGRAM statement to the END
statement. Write a program name after the PROGRAM statement. The program
name is expressed using an identifier. Put the content of the program between the
PROGRAM statement and the END statement.

Example:

PROGRAM SAMPLE Program name "SAMPLE"
REMARK SAMPLE Comment
SPEED=20 Set the movement speed to 20% of the maximum

speed.
MOVE Al Move the robot to position Al.
DELAY 0.5 Wait for 0.5 sec.
MOVE A2 Move the robot to position A2.
DELAY 0.5 Wait for 0.5 sec.

END End of program

As shown in the example, the body of the program is composed of statements made
up of an arrangement of SCOL commands. A new line is created every time the
EXE key is pressed. Up to 130 characters can be contained in a single line. You
may add spaces as you wish in order to make the program neater and easier to
read. You can write a remark and comment using the symbol (') in a statement.

Note: No spaces can be placed between characters structuring a word of a
command and identifier.

 STE 80721
– 2-20 –

 ROBOT LANGUAGE MANUALseries Robot Controller

2.8.2 Subprograms

You can call up a subprogram by just writing its name in the main program.

Example:

Main program

PROGRAM MAIN
REMARK *** SAMPLE 1 ***
SUB1

END

Sub program

PROGRAM SUB1
REMARK *** SUBPROGRAM NO. 1 ***
Body of subprogram
RETURN

END

A RETURN command should be inserted in subprograms to send control back to the
main program. If you forget to write RETURN, SCOL will forgive you and pretend
that there is a RETURN command in front of the END statement.

When wishing to pass data between subprograms and the main program, you have
to first specify arguments for the subprogram. When an argument is specified in a
subprogram, the program statement should be written like this:

PROGRAM <program name> (<names of arguments>)

The argument is specified within parentheses () following the program name of the
subprogram. The argument values are inserted to the specified variable names in
the subprogram. When using multiple arguments, write commas (,) to separate the
variable names in parentheses (). The maximum number of arguments is 10.

In the main program, specify the data to be transferred when the subprogram is
called in parentheses () after the subprogram name. The data specified in
parentheses () is transferred in the specified order to the variable names of the
subprogram. The argument data from the main program is substituted within the
subprogram, and when the data is changed, the data corresponding to the variables
in the main program is also changed at the same time.

 STE 80721
– 2-21 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Example:

Main program
PROGRAM MAIN

REMARK *** SAMPLE 2 ***
K1 = 15
K2 = 28
SUB2(K1, K2, K)
PRINT K

END

Sub program
PROGRAM SUB2(N1, N2, N3)

REMARK *** SUBPROGRAM NO. 2 ****
N3 = N1 + N2
RETURN

END

In the above example, three arguments are being passed off between the main
program and subprogram. Specifically, K1 of the main program is passed over as
N1 of the subprogram. Similarly, K2 of the main program is passed over as N2 of the
subprogram. The subprogram adds N1 and N2, and puts the result in a variable
called N3. When this happens, the value of K in the main program also changes.

When this program is executed, the values for K1=15 and K2=28 are added in the
subprogram, and the result K=43 is displayed on the teach pendant using the PRINT
command in the main program.

Note that subprograms may not call themselves. Also, should you call a
subprogram which is in another file, the controller will not understand you and
instead will treat the name of that subprogram as an error.

 STE 80721
– 2-22 –

 ROBOT LANGUAGE MANUALseries Robot Controller

 Note 1: An expression itself, result of vector data expression such as position data
and vector data element cannot be designated as an argument.

 Note 2: When a constant is used as an argument, it cannot be substituted into a
variable according to a subprogram.

 Note 3: For a variable which is an argument to a subprogram, a value should be
substituted into the variable before the subprogram is executed.

2.8.3 Library

The SCOL language does not allow you to use subprograms which are not in the
same file as the main program. However, by putting especially useful subprograms
in the library file, you can access the subprogram from the main program.
When writing your own subprogram to add to the library file, enter the program in
that file just like you would enter any other subprogram. For information on how to
enter a program into a file, refer to the Operator’s Manual.

The library comes in the following two (2) kinds.

 [1] System library
This library is always loaded at program execution.
The file name is “SCOL.LIB” which cannot be changed, but the contents can be
added or changed when necessary.
The OPEN1 and CLOSE1 commands are the subprograms which are included
in this library file. The contents of the library file which is the standardly
provided in the robot controller system disk are shown in Appendix C.
When you create a new subprogram in the system library, add it to the end of
the current library file (SCOL.LIB).

 [2] Dynamic link library
 This is the library file that the user can load when necessary.

 The name of library file is _______.LIB.
 The dynamic link library is the user program and you should declare its loading.

You can declare the loading of a library file in the GLOBAL area of the user
program in the following manner.

 STE 80721
– 2-23 –

 ROBOT LANGUAGE MANUALseries Robot Controller

GLOBAL
 LOADLIB PALLET.LIB

← Declaration of loading library.

END
PROGRAM SAMPLE1
 ~ ~ ~ ~ ~ ~
 Omitted
 ~ ~ ~ ~ ~ ~
END

 Up to five (5) dynamic link libraries can be loaded at the same time.

 Some SCOL commands use this dynamic link library.

 Even when such a command is used, declaration of loading is necessary with the
command of “LOADLIB + file name.”

 When a program which uses the dynamic link library is executed, the controller
creates a temporary file named “SCOLLIB.TMP (SCOL.LIB + dynamic link library).”
When a sufficiently free space is not available in the user program area, the
program may not be executed.

 Caution:
If a name of program to be executed is the same name as the subprogram included
in the selected library file, the subprogram included in the library file is executed in
the automatic operation.

Operation of dynamic link library function
When a program which requires the dynamic link library (i.e., program including the
LOADLIB command) is selected, the system operates in the following manner.

 [1] Opening the user program.

 [2] Check of the LOADLIB command (i.e., check of the file name).

 [3] Joining SCOL.LIB with the dynamic link library to make SCOLLIB.TMP.

 [4] Program check. Unless there is a problem, the SELECT command finishes.

 [5] When the SELECT command has finished normally, SCOLLIB.TMP is deleted
automatically. (When an error occurs, SCOLLIB.TMP is not deleted.)

 STE 80721
– 2-24 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Join

System library

SCOL.LIB

Dynamic link library

*****.LIB

User program

Program check

SCOLLIB.TMP

Temporary file

If an error occurs in the library due to some cause, the system displays the message
saying “LINE???:LIB>ERROR–***”.
Shown in “LINE???” is the line number of SCOLLIB.TMP. Confirm the contents of
SCOLLIB.TMP, then modify the library file.

 STE 80721
– 2-25 –

 ROBOT LANGUAGE MANUALseries Robot Controller

2.8.4 Multitask Processing

This paragraph describes how to use the multitask function of the SCOL language
together with the relevant commands and system variables.
Program execution of single task and multitask operation is shown in Fig. 1 and
Fig. 2. The number in the figure designates the order of the program execution.
Specific timing of change-over from program to program (task change) is described
later.

 [1] [2] [3] [4]
Program Program 1 Program 2 Program 3

 A1 B1 C1

 A2 B2 C2

 A3 B3

 A4

Fig. 1 Single task

operation
Fig. 2 Multitask operation

In Fig. 1, program A is executed continuously from the start to the end (single task
operation and no subroutine call).
A program which uses no multitask command is executed in the manner as shown
in Fig. 1 (no subroutine call).
Execution of a program which uses the multitask command is shown in Fig. 2.

As shown in Fig. 2, the multitask operation is realized, changing over a plural
number of individual programs by time sharing, as if the programs were executed in
parallel.

 STE 80721
– 2-26 –

 ROBOT LANGUAGE MANUALseries Robot Controller

The order of program execution is shown in the following table.

Order Program to be executed
1 A1 Program 1 start
2 B1 Program 2 start
3 C1 Program 3 start
4 A2
5 B2
6 C2 1-cycle end of program 3
7 A3
8 B3 1-cycle end of program 2
9 C1 Program 3 start

10 A4 1-cycle end of program 1
11 B1 Program 2 start
12 C2
13 A1 Program 1 start
: :

Next, the start of multitask is described.
A program that can be treated as multitask is the program block containing no
arguments. The program block means an area between the PROGRAM command
and END command, which consists of the SCOL language statements. The
subroutine without argument can be dealt with as a task. The argument cannot be
kept in the task.
To deal with a program as task, use the TASK command. The TASK command
executes a program specified in the argument as a task. Unless the program starts
by the TASK command, the program is not performed as a task.
The program block (statements between the PROGRAM command and the END
command) described at the head of the program file is an exception. Even if the
TASK command is not used, the program is performed as a task.
To execute the program 2 as a task in the Fig. 2, the TASK (“PROG2”) is required to
be executed in the program 1. (The program 1 is described at the head of the file,
and the program starts as a task without TASK command.)
To execute the program 3 as a task, a new task (“PROG 3”) is required to be
executed in the task (in the program 1 or 2 in this case) which has been already
started.
If the task and program which have been started are reset or the task operation is
released by the SCOL language, the task is kept active.

 STE 80721
– 2-27 –

 ROBOT LANGUAGE MANUALseries Robot Controller

The task ID (the number assigned to the task) is described.
The characteristic numbers (task ID) are assigned to the tasks which have been
started by the TASK command respectively. In the example of Fig. 2, “1” is
assigned to the program 1, “2” is assigned to the program 2 and “3” is assigned to
the program 3. This task ID starts from 1 in sequence and this ID increases one by
one every time the task starts (every time the task executes). If the task is
managed by the SCOL language, this task ID is used.
To get the task ID, see the following examples.

Example: I1 = TASK (“PROG 2”)

“I1” is a desired variable of integer type. The task ID of PROG 2 can be obtained.
This command is executed in the program 1. The task ID of its own cannot be
referred to in the program 2 in this example.

Example: I2 = TID

“I2” is a desired variable of integer type. If the system variable TID is referred to,
the task ID of its own can be acquired. If this command is executed in the program
2, the task ID of its own can be seen in the program 2 (“2” in this occasion).

If this command is executed in the program 1, the task ID of program 1 (“1” in this
occasion) is substituted for “I2”.
If the task ID other than the own task is referred to from other tasks, variables of
examples 1 and 2 are required to be defined as the global variable.

Change-over of task is described.
As shown in the Fig. 2, the system executes the program 1 ~ 3 by time sharing.
When this happens, timing of program change-over depends on the following three
conditions.

(1) When the program change-over is specified clearly by the SWITCH command
of the SCOL.
The SWITCH command is used if the task is changed over clearly by the
SCOL language. Even if the task change-over conditions specified in the
system are not satisfied while the SWITCH command is used, the task can be
changed over.

(2) When a new task starts by the TASK command of the SCOL.
If a new task starts by the TASK command, the program control is changed
over to the newly started task.

 STE 80721
– 2-28 –

 ROBOT LANGUAGE MANUALseries Robot Controller

(3) When the task terminates by the KILL command of the SCOL.
If the task of its own terminates by the KILL command, the program control is
changed over to the next task.

(4) When the predetermined conditions specified in the system are satisfied and
the program is changed over by the system.

The task change-over conditions specified in the system are as follows:

(1) A program in a task is executed for more than 100 msec.

(2) When the data area for movement command becomes full.
Up to four data can be read beforehand by the movement command. If this
internal area for prior reading becomes full, the task is changed over.

(3) When a command required for communication with the external device has
been executed.
The INPUT, PRINT and RESTORE commands are not executed by the active
SCOL program alone. They take time to execute the TP and RAM file
operation by an operator. The active program waits for the reply of
processing finish from the operator and changes over the task.
To cancel the task changeover by the system, specify DISABLE for system
variable SWITCH.

 Note: During step execution or when task changeover has been cancelled, only
the program executed currently continues and the program of another task
already started will not run. (The single task operation becomes effective.)

 Cautions on creating a multitask program

 (1) Motion commands can be used in the main task only. If they are used in the
subtask, an error is generated.
The motion commands are MOVEI, MOVEA, MOVE, MOVES, MOVEC,
MOVEJ and DELAY.

 (2) As each task has system variables TIMER, TID and NOWAIT separately, they
can be set arbitrarily in each task, or referred to.
For NOWAIT, separate or common use of it can be selected by means of the
user parameter [U02].

 STE 80721
– 2-29 –

 ROBOT LANGUAGE MANUALseries Robot Controller

 It is recommended to use NOWAIT separately and set ENABLE NOWAIT in the
subtask.
The following system variables are commonly used among the tasks. A value
set in one task remains effective in another task. Careful precautions should
be taken, therefore, when setting a plural number of tasks.

 CONFIG, ACCUR, ACCEL, DECEL, SPEED, PASS, TORQUE, GAIN, TOOL,
BASE, WORK, PAYLOAD, NOWAIT

 (3) When a command for waiting for the finish of a movement as shown below has
been executed while the motion command was currently executed in the main
task, the subtask waits for the finish of the active motion command in the main
task.

 1) Execution of input/output commands in DISABLE NOWAIT mode
The input/output commands includes INPUT, PRINT, DIN, DOUT, BCDIN,
BCDOUT and POUT.

 2) Execution of WAIT MOTION command.

 (4) If execution of an INPUT or PRINT command has been commanded in another
task while the same command was executed in one task for different
communication channel, the INPUT or PRINT command started first is
executed to the last and the another task should wait until the command has
been executed.

 STE 80721
– 2-30 –

 ROBOT LANGUAGE MANUALseries Robot Controller

2.8.5 Global Variable Definition

If the global variable which can be referred to from the entire program is defined,
obey the following rules.

(1) Global variable declaration
If the global variable is used, the type and identifier (variable name) of the
variable to be used is required to be defined.
This definition must be performed before the first PROGRAM statement.
To define the variable A of real number type and the variable B of integer type,
the definition is as follows:

 GLOBAL
A = 1.0 (This value is the initial value of the variable.)
B = 2
END

PROGRAM
:
END

(2) Global variable declaration by type
To define the global variable of each type, use the following formats.

Integer type: A = 1
Real number
type:

B = 1.0

Array type: DIM D(10) AS INT Array of ten integer type
elements is defined. (Note 1)

DIM E(10, 3) AS REAL Array of 10 × 3 real number type
elements is defined.

DIM F(5) AS POINT Array of five position type
elements is defined.

In the global block between reserved words GLOBAL and END, only variables
of a scalar type and array type should be described, and the variables of a
vector type should be described in the data block between reserved words
DATA and END which are edited by the data editor.

 STE 80721
– 2-31 –

 ROBOT LANGUAGE MANUALseries Robot Controller

(3) Setting of initial value of array type variable
 Like the global variable other than the array, specify the initial value of the scara

type array variable by the global block, and specify the initial value of vector type
array variable by the data block.

Note 1: The initial value of the array type global variable, which is not set clearly, is
indefinite. The variable is required to be initialized by the user program.

2.8.6 Array Type Variable

For the variables of a scalar type and vector type, each name represents one (1)
data. If one (1) name can signify multiple data, however, programming becomes
easier, and the array type variable can be used for this purpose.
To use the array type variable, the type and number of all elements should be
predetermined by the DIM command. The array type variable bearing the same
name cannot have a type with different elements.
For details, see the descriptions on the DIM command.
The variable which is declared as the array type by the DIM command should be
described in the program according to the following format.

Variable name (<element> [. <element>] ···)

For the element number following the variable name, any value ranging from 1 to a
number specified by the DIM command can be selected. However, if the total
number of "variable name + "(" + element + ")" exceeds ten (10) characters, an
execution error is generated.
When the SCOL program is executed, specific one (1) data is selected from multiple
data based on the variable name and element number.
When 25 positions (5 × 5) are processed as the array variable named "P" and each
axis is moved to respective positions in turn, the program is as follows:

 GLOBAL
 DIM P(5, 5) AS POINT
END
PROGRAM SAMPLE
FOR I = 1 TO 5
 FOR J = 1 TO 5
 MOVE P(I, J)

 STE 80721
– 2-32 –

 ROBOT LANGUAGE MANUALseries Robot Controller

 NEXT J
 NEXT I

END
DATA
 POINT P(1,1) = 650, 0, 100, 0, 0 / LEFTY
 POINT P(1,2) = 650, 0, 100, 0, 0 / LEFTY

 •
 •
 •

 POINT P(5,5) = 650, 0, 100, 0, 0 / LEFTY
END

Direct access to or substitution of elements X and Y of vector type array variable is
not possible. In the example above, the following command cannot be executed
for array type variable P as given above.

 PRINT P(1,1).X, CR

When this happens, copy the value to the normal vector type variable, then execute
the command.

 PP=P(1,1)
PRINT PP.X

Also, if move to position P (I, J) is commanded by mistake while I = 5 and J = 6, an
execution error is generated because access to or substitution of an element other
than specified by the DIM command is not possible. The type of array index is only
integer. If the data of a real number type and vector type is used, an error occurs
at execution.

 STE 80721
– 2-33 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Section 3

Explanation of Robot Commands

Here we describe in detail what each SCOL command means and does. These
commands are listed in alphabetical order.

3.1 Command Explanations

Commands are explained as follows.

(1) Purpose
This paragraph gives a simple explanation of what the command does.

 (2) Format
This paragraph describes how to write down the command. The symbols used
in the paragraph have the meaning that follows:

[] Indicates that the content therein can be omitted. The commands are
specified as necessary.

< > Indicates the content of the data to be described.
{ } Indicates that one among the data in this bracket should be selected.
... Indicates that a plurality of data elements can be specified.

The above symbols are used here for purposes of explanation, and they are not
actually written in the program. If these symbols need to be used in a particular
case, this will be explained.

(3) Examples
This paragraph presents samples showing how to use the command.

(4) Analysis and advice
This paragraph presents an analysis of the command and describes warnings
and restrictions for its use.

 STE 80721
– 3-1 –

 ROBOT LANGUAGE MANUALseries Robot Controller

(5) Sample program
This paragraph presents a short program example using the command.

The meaning of the data in the command format is shown below. An expression
can also be used as data.

<Position> Specifies positional data.

<Axis> Specifies a joint-controlled axis. The data must be an
integer from 1 to 5.

<Absolute position> Specifies the absolute position of each axis. Data is in
units of 0.001 mm or 0.001 degrees. Variables or
expressions may also be used as data.

<Relative position> Specifies the travel of each axis in terms of relative
position. Data is in units of 0.001 mm or 0.001
degrees. Variables or expressions may also be used
as data.

<Time> Specifies time in units of 0.01 seconds. Variables or
expressions may also be used.

<Logical expression> Specifies a logical expression.

<Statement> Specifies a statement to be executed. As long as it is a
normal SCOL statement, you can specify anything you
want.

<Monitoring condition> With an ON statement, specifies condition(s) to be
monitored.

<Label> Specifies a label for branching the program.

<Comment> Shows comments written in the program.

<Variable> Indicates a variable.

<Expression> Indicates a calculation. Individual variables may also
be substituted for a calculation.

<Signal name> Specifies the name of an I/O (Input/Output) signal. The
signal name is to be given as an integer. A positive
value shows that the signal is ON and a negative value
shows that the signal is OFF. Variables and
expressions may also be used.

 STE 80721
– 3-2 –

 ROBOT LANGUAGE MANUALseries Robot Controller

<Mass> Specifies the mass of the load acting on the robot hand.

<Center of gravity offset> Specifies the distance between the center of gravity of
the load applied to the tip of robot hand and the center
of the tool of the hand.

<Configuration> Specifies the robot configuration with an integer. "0"
means the configuration is undefined (not fixed), "1"
specifies a left hand configuration, and "2" specifies a
right hand configuration.

<Switch> Specifies the system switch. There are two system
switches available.

PASS This system switch specifies shortcut
movement.

NOWAIT This system switch directs signal I/o to be
performed without waiting for the completion
of a previous movement command.

<State> Specifies what is to be reset by the RESET command.

 STE 80721
– 3-3 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Table 3.1 presents a list of commands classified by purpose.

Table 3.1 SCOL commands

Type Command Purpose
BREAK Suspends movement immediately.
CLOSE1, CLOSE2 Closes hand after completion of movement.

Movement
control
commands CLOSEI1 Closes hand.
 CLOSEI2 Closes hand.
 DELAY Pauses for specified time.
 MOVE Synchronous movement
 MOVES Linear interpolation movement
 MOVEC Circular interpolation movement
 MOVEA Absolute single axis movement
 MOVEI Relative single axis movement
 MOVEJ Arch movement
 OPEN1, OPEN2 Opens hand after completion of movement.
 OPENI1, OPENI2 Opens hand.
 PAUSE Suspends a movement.
 READY Moves to machine coordinate origin.
 RESUME Restarts an interrupted movement.

FOR ~ TO ~ STEP ~ Repeats movement.
GOTO Branches unconditionally.

Program
control
commands GOTO () Branches in accordance with the value of an

expression
 IGNORE Cancels monitoring.
 IF ~ THEN ~ ELSE ~ Judges conditions.
 NEXT Repeats movement.
 ON ~ DO ~ Registers conditions monitor.
 PROGRAM Marks beginning of program.
 RCYCLE Label for cycle reset
 RETURN Returns to main program.
 STOP Stops the program.
 WAIT Waits for establishment of conditions.
 END End of program
 KILL Task standstill
 MAXTASK Maximum number of tasks
 REMARK Comments

SWITCH Task change-over
TASK Task start

TID Task ID

 STE 80721
– 3-4 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Type Command Purpose

BCDIN Inputs a BCD signal.
BCDOUT Outputs a BCD signal.

I/O control
commands

CR Outputs a CR code
 DIN Reads an input signal.
 DOUT Outputs a signal.
 HEXIN Reads signals in hexadecimal notation.
 HEXOUT Outputs signals in hexadecimal notation.
 PULOUT Outputs a pulse signal.
 RESET Resets the controller.
 PRINT Outputs communication data.
 INPUT Inputs communication data.

ACCEL Specifies acceleration (during acceleration).
ACCUR Specifies positioning accuracy.

Movement
condition
commands CONFIG Specifies configuration.
 DECEL Specifies acceleration (during deceleration).
 DISABLE System switch off
 ENABLE System switch on
 FREELOAD Cancels load data.
 GAIN Each axis gain
 NOWAIT Does not wait for the completion of

positioning for previous movement.
 OVERRIDE Speed override

PASS Short-cut movement parameter
PAYLOAD Sets load data.

 SMOOTH (option) Smooth movement
 SPEED Specifies speed.
 MOVESYNC Specifies movement command

synchronization/unsynchronization mode
 SWITCH Prohibits or allows task change-over.
 SLOWDOWN Slowdown
 SLWSPD Slowdown speed
 WITH Specifies operating conditions.

 STE 80721
– 3-5 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Type Command Purpose

COS Cosine Calculator
commands SIN Sine
 TAN Tangent
 ABS Absolute value
 ACOS Arccosine
 AND Logical product
 ASIN Arcsine
 ATAN Arctangent
 ATAN2 Arctangent
 DEST Destination position
 EXP Exponent to power e
 HERE Present position
 INT Changes number to an integer.
 LN Natural logarithm
 LOG10 Common logarithm
 MOD Remainder
 NOT Negation
 OR Logical sum
 POINT Creates positional type data.
 REAL Changes number to a real number.
 SGN Extracts and returns the sign.
 SQRT Square root
 TRANS Creates coordinate type data.

BASE Base coordinate system
MODE System operating mode

Movement
reference
commands MOTION Amount of movement which has been

executed
 MOTIONT Time expended for a motion
 REMAIN Amount of movement remaining to be

executed
 REMAINT Time remaining for a motion

TIMER Timer
TOOL Tool coordinate system

WORK Work coordinate system

 STE 80721
– 3-6 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Type Command Purpose

DATA Starts data definition.
DIM ~ AS Array variable definition
GLOBAL Global variable definition

Data
definition
commands

RESTORE Saves an initial value of the global variable to
a file.

 SAVEEND Saves data at power OFF.
INITPLT Initializes a pallet. Palletize

command MOVEPLT Moves to pallet specified position.
LATCH Position latch function ON/OFF
LATCHTRG 1 ~ 8 Detected edge direction
LATCHSIG 1 ~ 8 Signal state

Positional
data latch
function
(Options of
TS3000) LATCHPSN 1 ~ 8 Latched position

COARSE Coarse positioning accuracy System
constants COM0, TP Communication channel (teach pendant)
 COM1 Communication channel 1
 CONT Continuous operation mode
 CYCLE Cycle operation mode
 FINE Fine positioning accuracy
 OFF Each axis gain OFF
 ON Each axis gain ON
 PAI Pi
 SEGMENT Segment operation mode

PLCDATAR 1 ~ 8 Simplified PLC interface Simplified
PLC PLCDATAW 1 ~ 8 Simplified PLC interface

SAVEF 1 ~ 4 Real number type variable (backup) Special
variables SAVEI 1 ~ 4 Integer type variable (backup)

 STE 80721
– 3-7 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Type Command Purpose

^ Exponentiation Mathemati-
cal symbols – Negative sign
 *, / Multiplication and division
 +, – Addition and subtraction
 = Substitution
 = = Equal
 < >, > < Not equal
 < Less than
 > Greater than
 < =, = < Less than or equal
 > =, = > Greater than or equal
 ‘ Comments
 . Designation of vector element

3.2 Explanation of Commands

SCOL commands are explained in the following pages. Commands are arranged in
alphabetical order.

 STE 80721
– 3-8 –

 ROBOT LANGUAGE MANUALseries Robot Controller

ABS

Purpose The ABS function will return the absolute value of a number.

Format ABS(<expression>)

Examples AK = ABS(–20.345)
K = ABS(K1)
J1 = K – ABS(N – 28.5)

Analysis
and

advice

This function returns the absolute value of the <expression>.

You may use a constant, variable or result of calculation for the
<expression> term. However, you may not use vector data.

This command must be used in an expression.

Sample
program PROGRAM MAIN

ABSSAMPLE (3, 5, K)
PRINT TP, K, CR

END
PROGRAM ABSSAMPLE(K1, K2, K)

K = ABS(K1 – K2)
RETURN

END

This program takes the arguments K1 and K2, subtracts K2 from
K1, finds the absolute value of the result, calls it K, and sends
program execution back to the main program.

 STE 80721
– 3-9 –

 ROBOT LANGUAGE MANUALseries Robot Controller

ACCEL

Purpose This command sets the fraction of full acceleration for the robot.

Format ACCEL = (<expression>)

Examples ACCEL = 80
ACCEL = 0. 8*ACCEL
MOVE A1 WITH ACCEL = 90

Analysis
and

advice

ACCEL is a system variable used to specify the acceleration of
the robot when the robot is accelerating.
Acceleration is expressed as a percentage of the standard (full)
acceleration. In the SCOL language, acceleration during
acceleration and acceleration during deceleration are set
separately. In order to set the acceleration during deceleration,
use the DECEL commands.

This is used to lower the acceleration as needed when the robot
is carrying a heavy load. In this case, change the acceleration
during both acceleration and deceleration. For the setting value
of the acceleration according to the load, see the "Transportation
and Installation Manual."

You may use a constant, a variable or a calculation for the
<expression>. However, you may not use vector-type data.

This command must be used in an expression.
An upper limit on acceleration is set in the controller to protect
the robot. The robot will not exceed this limit even if you enter a
value larger than the upper limit.

 STE 80721
– 3-10 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Values of 0 or less are taken as 1.

The current acceleration during acceleration can be viewed by
viewing this system variable.

This initial value for acceleration is 100%.

Sample
program

PROGRAM ACCELSAMPL
FOR K = 1 TO 100

ACCEL = K
DECEL = K
MOVE A1
MOVE A2

NEXT K
END

This program increases the acceleration from 1% to 100% in
steps of 1%.

 STE 80721
– 3-11 –

 ROBOT LANGUAGE MANUALseries Robot Controller

ACCUR

Purpose This command specifies the positioning accuracy of the robot.

Format ACCUR = (<expression>)

ACCUR = 1

Examples N = ACCUR
MOVE A1 WITH ACCUR = COARSE

Analysis
and

advice

ACCUR is a system variable used to specify the positioning
accuracy of the robot. A coarse positioning accuracy is marked
by 0 and a fine positioning accuracy is marked by 1.

When the positioning accuracy is set to coarse, the robot
executes the subsequent command before the positioning of the
robot is completed. The robot tact time can be reduced by
setting the positioning accuracy to COARSE for operations
where waiting for high positioning accuracy is unnecessary.
The system constants FINE and COARSE can be used to
specify the positioning accuracy. The positioning accuracy is set
to fine by ACCUR=FINE and set to coarse by
ACCUR=COARSE.
You may use a constant, a variable, or a calculation for the
<expression>. However, you may not use vector-type data.

The ACCUR command must be used in an expression.

When specifying the positioning accuracy, anything entered that
is less than 0 will be taken as 0 and anything greater than 1 will
be taken as 1.

You can find the positioning accuracy under which the system
currently is operating by referring to ACCUR. An ACCUR value
of 0 means coarse, and a value of 1 mean fine.

The initial setting for the positioning accuracy is FINE.

 STE 80721
– 3-12 –

 ROBOT LANGUAGE MANUALseries Robot Controller

PROGRAM ACCURSMPL Sample

program ACCUR = COARSE
MOVE A1
MOVE A2
MOVE A3 WITH ACCUR = FINE
MOVE A4

END

The robot will move with fine positioning accuracy only for
movement to point A3. It will move with coarse positioning
accuracy for other movements increasing cycle time.

 STE 80721
– 3-13 –

 ROBOT LANGUAGE MANUALseries Robot Controller

ACOS

Purpose

Format

Examples

Analysis
and

advice

Sample
program

This function returns the arccosine of an entered value.

ACOS(<expression>)

K = ACOS (0.577)
J1 = 90 – ACOS (X/L)

This function returns the arccosine of the value in the brackets
(). The returned value is in units of degrees.

You may enter a constant, variable or calculation for the
<expression>. However, you may not enter vector-type data.

This command must be used in an expression.

PROGRAM MAIN

ACOS2 (1.0, 2.0, K)
PRINT TP, K, CR

END
PROGRAM ACOSSAMP (L, X, K)

K = ACOS (X/L)
RETURN

END

This program takes the arguments L and X, divides X by L, takes
the arccosine of the result, calls it K, and returns to the main
program.

 STE 80721
– 3-14 –

 ROBOT LANGUAGE MANUALseries Robot Controller

AND

Purpose AND calculates the logical product of expressions.

Format <Logical expression> AND <Logical expression>

IF DIN (1) AND K < = 3 THEN J = 0

Examples
WAIT DIN (5) AND TIMER==0

Analysis
and

advice

The AND statement is used to find the logical product of two
logical expressions. If both logical expressions are true, a
TRUE value will be returned.

This command must be used in a logical expression.

Sample
program PROGRAM ANDSAMPLE

FOR K=1 TO 50
IF K==50 AND DIN (1) THEN J=1 ELSE J=0
PRINT TP, J, CR
NEXT K

END

 STE 80721
– 3-15 –

 ROBOT LANGUAGE MANUALseries Robot Controller

ASIN

Purpose This function finds the arcsine of the value entered.

Format ASIN ((expression>)

Examples K = ASIN (0.577)
J1 = 90 – ASIN (Y/L)

This function returns the arcsine of the value in the brackets ().
The returned value is in units of degrees.

Analysis
and

advice
You may enter a constant, variable or calculation for the
<expression> term. However, you may not enter vector-type
data.

This command must be used in an equation.

Sample
program

PROGRAM MAIN
ASIN2 (5.0, 2.0, K)
PRINT TP, K, CR

END
PROGRAM ASIN2 (L, Y, K)

K = ASIN (Y/L)
RETURN

END

This program takes the arguments L and Y, divides Y by L, takes
the arcsine of the result, calls it K, and returns to the main
program.

 STE 80721
– 3-16 –

 ROBOT LANGUAGE MANUALseries Robot Controller

ATAN/ATAN2

Purpose
This function returns the arctangent for the value(s) entered.

ATAN (<expression>)

Format

Examples

Analysis
and

advice

ATAN2 (<expression>, <expression>)

K = ATAN (0.577)
J1 = 90 – ATAN (Y/X)
N = ATAN2 (0.3, 0.5)
D = ATAN2 (100/K, 50/J)
L3 = ABS (180 – ATAN2 (A1, Y, A1, X))

This function returns the arctangent of the value(s) in the
brackets ().
The ATAN2 takes the first expression in the brackets, divides it
by the second expression in the brackets, and finds the
arctangent of the result.

For both functions, the returned value is in units of degrees.
(Be warned that ATAN2 (0, 0) will return a 0 instead of an error.)

You may enter a constant, variable or calculation for the
<expression> term. However, you may not enter vector-type
data. This command must be used in an equation.

 STE 80721
– 3-17 –

 ROBOT LANGUAGE MANUALseries Robot Controller

PROGRAM MAIN Sample

program ATANSAMPLE (5.0, 3.0, K)
PRINT TP, K, CR

END
PROGRAM ATANSAMPLE (X, Y, K)

K = ATAN (Y/X)
RETURN

END

This program takes the arguments X and Y, divides Y by X, takes
the arctangent of the result, calls it K, and returns to the main
program.

PROGRAM MAIN
ATAN2SMPL (K)
PRINT TP, K, CR

END
PROGRAM ATAN2SMPL (K)

K = ATAN2 (A1. Y, A1. X)
RETURN

END

This program takes the elements X and Y from taught point A1,
divides Y by X, takes the arctangent of the result, calls it K, and
returns to the main program.

 STE 80721
– 3-18 –

 ROBOT LANGUAGE MANUALseries Robot Controller

BASE

Purpose
BASE is a system variable used to specify the base coordinate
system.

Format BASE

BASE = TRANS (0, 0, 0, 0)

Examples

Analysis
and

advice

BASE1 = BASE
MOVE A1 WITH BASE = BASE + TRANS (,, 100)

BASE is a system variable used to specify the base coordinate
system. It can be handled as normal coordinate-type data. By
referring to the BASE, you can find the values (location) of the
present base coordinate system.

You can directly designate values for the base coordinates with
one of the following two methods:

BASE = TRANS (X, Y, Z, C)
BASE = {X, Y, Z, C}

In order to make it clear just what kind of data type you are
using, always try to use the TRANS command.

The BASE variable has the following format:

X, Y, Z, C: X, Y, Z and C are real numbers representing the
position of the base coordinate system. Units are of
millimeters or degrees.

The BASE coordinate system is created by "sliding" a distance of
X, Y and Z along the respective axes of the WORLD coordinate
system and then twisting the new Z axis by an amount C.

 STE 80721
– 3-19 –

 ROBOT LANGUAGE MANUALseries Robot Controller

BASE must be used in an expression.

Be aware that if you change base coordinate systems within a
program, there may be some misalignment between the
positions as taught and the positions where the robot actually
moves.

Sample
program

PROGRAM BASESAMPLE
MOVE A1
MOVE A2
BASE = BASE + TRANS (,, 200)
MOVE A1
MOVE A2
BASE = TRANS ()

END

The BASE command shifts the BASE coordinate system 200 mm
along the Z axis and after that, the robot moves to a point below
200 mm from the taught position.

 STE 80721
– 3-20 –

 ROBOT LANGUAGE MANUALseries Robot Controller

BCDIN

Purpose

Format

This command is used to read in signals as BCD (Binary Coded
Decimal) notation.

BCDIN (<signal name>, <signal length>)

K = BCDIN (1, 2)

Examples

Analysis
and

advice

J2 = BCDIN (N, N + 2)
GOTO (BCDIN (20, 1)) L1, L2, L3

The command causes an input signal to be read in as BCD
notation. The signal will start from the signal name and
continue to a place 4 times the value of the specified signal
length. For example, "K = BCDIN (1, 2)" tells the controller to
read in, as BCD notation, an eight unit signal starting from the
1st unit (bit) and continuing to the 8th unit (bit).

Higher signal numbers correspond to bits with a higher digit.

Input signals are divided into units of 4 bits (in order of low to
high place value (signal number)) and converted into Base 10.

Signals are coded as 1 for ON and 0 for OFF.

Example:
In the case where input signals 1 to 12 indicate the state shown
below, the value of BCDIN(1,3) is 329.

 STE 80721
– 3-21 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Input signal
number 12 11 10 9 8 7 6 5 4 3 2 1

Input signal
state OFF OFF ON ON OFF OFF ON OFF ON OFF OFF ON

Base 2
expression 0 0 1 1 0 0 1 0 1 0 0 1

Base 10
exp0ression 3 2 9

You may use constants, variables, expressions or calculations
for <signal name> and <signal length>. However, you may not
use vector-type data.

This command must be used in an equation.

When an input signal is coded based on 4 bits and if it exceeds 9
(1001 in binary notation), the signal is coded in the binary
notation. In other words, if signal “1111” is input in the binary
notation, it is read as “15”.

Sample
program PROGRAM BCDINSAMPL

K = BCDIN(l, 2)
SPEED = K
MOVE A1
MOVE A2

END

This program reads in a single made up of eight bits, sets the
movement speed in accordance with that signal.

 STE 80721
– 3-22 –

 ROBOT LANGUAGE MANUALseries Robot Controller

BCDOUT

Purpose

Format

This command will put a signal into BCD notation and output the
result.

BCDOUT(<signal name>, <signal length>, <expression>)

Examples

Analysis
and

advice

BCDOUT(1, 4, 3) BCDOUT(N, N+4, K)

This command will take the value of the expression and change
it into a BCD signal having the name <signal name> and a signal
length four times the value of <signal length>.

For example, the command BCDOUT(1, 1, 3) will produce an
output signal which is four bits long and starts from signal
position 1. The output signal will express the value 3 as a
binary number. Therefore, the first two bits (output signal
numbers 1 and 2) will be ON.

Higher signal numbers correspond to bits with a higher digit.

Each digit of <expression> is broken down one at a time and
converted into a 4 bit code. The 4 bit code itself is built up in
order of smaller to larger output signal number.

Should there not be enough room to hold all the bit code
corresponding to the Base 10 <expression> (i.e., should the
signal length be too short), the excess digits of the Base 10
<expression> will be ignored.
Signals are considered as 1 when ON and 0 when OFF.

 STE 80721
– 3-23 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Example:
The command BCDOUT(1, 3, 952) will create an output signal
like that shown below.

Base 10
expression 9 5 2

Base 2
expression 1 0 0 1 0 1 0 1 0 0 1 0

Output signal
number 12 11 10 9 8 7 6 5 4 3 2 1

Output signal
state ON OFF OFF ON OFF ON OFF ON OFF OFF ON OFF

You may use constants, variables, expressions or calculations
for <signal name>, <signal length> and <expression>.
However, you may not use vector-type data.
If the same signals are output consecutively, the signal output
last becomes valid.
Be careful of agreement's there being in the signal range by
which it is possible to guarantee simultaneous-ness.
The simultaneous-ness of BCDOUT to the range of the 16 bit
carving from DOUT1, DOUT101, DOUT301 can be guaranteed
but the simultaneous-ness of BCDOUT which strides the
boundary can not be guaranteed.

Sample
program PROGRAM BCDOUTSAMPL

J = 0, 0
FOR K = 1 TO 4
J = 2 ^ (K = 1)
BCDOUT (1, 1, J)
TIMER = 0.5
WAIT TIMER = = 0
BCDOUT (1, 1, 0)
NEXT K

END

This program will output a number from 1 to 4 in steps of 1 at
intervals of 0.5 seconds.

 STE 80721
– 3-24 –

 ROBOT LANGUAGE MANUALseries Robot Controller

BREAK

Purpose

Format

This command immediately suspends robot operation.

ON <monitoring condition> [{BREAK | PAUSE}] DO <statement>

ON DIN(l) BREAK DO SUB

Examples

Analysis
and

advice

The BREAK command will stop robot movement immediately
when the specified monitoring condition has been satisfied, and
execute the statement following the DO statement. The robot will
decelerate and stop the movement.
For more information, see the ON command.

The RESUME command can be used to restart operation
interrupted by the BREAK command.
This command allows you to stop the robot and take appropriate
reaction should any problems occur with the system.

Sample
program

PROGRAM BREAKSMPL
REMARK *** MAIN PROGRAM ***
ON DIN(24) BREAK DO BREAKSUB
MOVE A1
MOVE A2
MOVE A3
WAIT MOTION >= 100
IGNORE DIN(24)

END

 STE 80721
– 3-25 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Should something go wrong with the system and Input Signal 24
turn ON, the robot will stop immediately and control will shift to
BREAKSUB, a subroutine designed specifically for such a case.

PROGRAM BREAKSUB
REMARK *** SUBROUTINE ***
WAIT DIN(–24)
RESUME

END

The subprogram BREAKSUB will sit and wait until Input Signal
24 turns OFF.

After the problem has been removed, the program resumes the
movement.

 STE 80721
– 3-26 –

 ROBOT LANGUAGE MANUALseries Robot Controller

CLOSE1, CLOSE2, CLOSEI1, CLOSEI2

Purpose

Format

These commands close the robot hand.

CLOSE1
CLOSE2
CLOSEI1
CLOSEI2

CLOSE1

Examples

Analysis
and

advice

CLOSEI2

These commands are used to close the hand. The numbers 1
and 2 refer to Hand1 and Hand2. These commands close the
hand by changing the state of the output signal which controls
the robot hand.

The CLOSE command directs the robot to close its hand after it
completes the motion in progress.

The CLOSEI command directs the robot to close its hand
immediately.

Note that these commands will not work if the file SCOL.LIB is
not in the controller RAM drive.

Also, keep in mind that there is a slight delay from when a
CLOSE command is executed until the robot actually closes its
hand.
Corresponding commands OPEN1, OPEN2, OPENI1 and
OPENI2 are provided in order to open the hand.

These commands execute a program written in the system
library (SCOL. LIB). The data of SCOL. LIB should be changed
according to the robot hand specifications.

 STE 80721
– 3-27 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Sample
program

PROGRAM CLOSESMPL
OPENI1
MOVE A1
CLOSE1
DELAY 0.5
MOVE A2

END

This program closes the hand1 after the robot has finished
moving to point A1. The robot waits 0.5 seconds until the hand
is closed completely after the CLOSE command has been
executed.

PROGRAM CLOSEISMPL
ENABLE NOWAIT
OPENI1
DELAY 0.5
MOVE A1
CLOSET 1
DELAY 0.5
MOVE A2

END

Here, the robot will close the hand1 while moving to point A1.

 STE 80721
– 3-28 –

 ROBOT LANGUAGE MANUALseries Robot Controller

COARSE

Purpose

Format

COARSE is a system constant used to set the positioning
accuracy to coarse.

COARSE

ACCUR = COARSE

Examples

Analysis
and

advice

MOVE A1 WITH ACCUR = COARSE

The COARSE statement sets positioning accuracy to COARSE.

As a system constant, COARSE has a value of 0. If you
wanted to, you could use it in your program as a constant having
the value 0. However, you should not do things like that since it
makes your program extremely hard to read.

You cannot substitute into system constants such as COARSE.

For information on positioning accuracy, refer to the ACCUR
command.

Sample
program

PROGRAM COARSESMPL
MOVE A1
ACCUR = COARSE
MOVE A2
MOVE A3

END

This program sets the positioning accuracy to coarse before
moving around the robot.

 STE 80721
– 3-29 –

 ROBOT LANGUAGE MANUALseries Robot Controller

COM0, COM1

Purpose

Format

These commands specify the communication channel to be
taken by a PRINT or INPUT command.

PRINT [{COM0 | COM1 | TP},]
{<character string> | <expression>}][<character string>|
<expression>]]...[, CR]
INPUT [(COM0 | COM1 | TP},]
<variable> [, <variable>] ...

PRINT COM0, "*** INPUT N ***"

Examples

Analysis
and

advice

PRINT COM1, N, N * 10
INPUT COM1, K

COM statements are used to designate a communications
channel when using a PRINT or INPUT command.

COM0 is a communications channel used solely for the teach
pendant.

COM1 corresponds to the communication channel of controller
connector COM1.

If you do not specify a communication channel for a PRINT or
INPUT command, the controller inputs or outputs data to or from
the communication channel used solely for the teach pendant.

See the PRINT and INPUT commands for communication
processing.

 STE 80721
– 3-30 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Sample
program PROGRAM COMSAMPLE

PRINT COM0, "*** INPUT N ***"
INPUT COM0.N
PRINT COM1.N, CR

END

This program inputs a value from the teach pendant and sends it
out on the No. 1 communications channel.

 STE 80721
– 3-31 –

 ROBOT LANGUAGE MANUALseries Robot Controller

CONFIG

Purpose

Format

This command is used to specify the robot configuration.

CONFIG = <expression>

Examples CONFIG = 1
MOVE A1 WITH CONFIG = RIGHTY

Analysis
and

advice

CONFIG is a system variable used to express the configuration
of the robot. You should specify the robot configuration when
there is a chance of peripheral equipment interfering with the
robot motion.

The robot configuration is undefined at 0, left handed at 1 and
right handed at 2. In order to specify the system configuration,
you may use these numbers or the system constants FREE,
LEFTY and RIGHTY.

As you would probably guess, the configuration is undefined at
CONFIG = FREE, left handed at CONFIG = LEFTY, and right
handed at CONFIG = RIGHTY.

The configuration is included in positional data fed into the robot
while teaching. Therefore, when CONFIG = FREE, the robot
will move with the same configuration it had when it was being
taught.

Unless there is a good reason otherwise, you should leave the
configuration undefined, i.e. CONFIG = FREE. This is the initial
value that the robot will assume.

The robot configuration may change upon executing a
movement command.

 STE 80721
– 3-32 –

 ROBOT LANGUAGE MANUALseries Robot Controller

When conducting linear or circular interpolation (with the MOVES
or MOVEC command), the robot configuration cannot be
changed and an error will result if you try.

Designation of the configuration for an orthogonal coordinate
robot is ignored.

A constant, a variable or a calculation can be used for the
<expression> term. However, you may not use vector-type
data.
Even if it refers to this system variable, the posture of the present
robot can not be referred to.
It is possible for the posture of the present robot to be acquired
by the HERE direction.
N=HERE.6
The value of the present posture is stored in N.
For SCARA type robots, the value of HERE.6 is undefined at 0,
left handed at 1, and right handed at 2. When the starting point
position of the robot isn't correctly set, it works in the position
where a robot was shifted with the position to have instructed in
when changing the posture of the robot.
Therefore, when instructing a robot in the position, the robot go
actually in the working posture.

Sample
program

PROGRAM CONFIGSMPL
CONFIG = RIGHTY
MOVE A1
MOVE A2
MOVE A3 WITH CONFIG = LEFTY
MOVE A4

END

The robot moves with a left hand configuration only when moving
to A3, and moves with a right hand configuration for other
movements.

 STE 80721
– 3-33 –

 ROBOT LANGUAGE MANUALseries Robot Controller

CONT

Purpose
CONT is a system constant which is used to refer to the system
operating mode.

CONT

Format

IF MODE < > CONT THEN STOP

Examples

Analysis
and

advice

Sample
program

CONT is used along with the MODE command to refer to the
system operating mode. When MODE = = CONT, the system is
operating in the continuous operation mode.

As a system constant, CONT has a value of 0. If you wanted to,
you could use it in your program as a constant having the value
0.
However, you should not do it since it will make your program
hard to understand.

You cannot substitute into system constants.

For information on operating modes, refer to the MODE
command.

PROGRAM CONTSAMPLE

IF MODE <>CONT THEN STOP
MOVE A1
MOVE A2
MOVE A3

END

If the system changes out of the continuous operation mode,
program execution will stop and the robot will not move.

 STE 80721
– 3-34 –

 ROBOT LANGUAGE MANUALseries Robot Controller

COS

Purpose This function returns the cosine of an entered value.

COS (<expression>)

Format

K = COS(60)

Examples

Analysis
and

advice

Sample
program

J1 = 1 – COS(180 – D)

This function returns the cosine of the value in the brackets
(). Calculations are handled in units of degrees.

You may enter a constant, variable or calculation for the
<expression> term. However, you may not enter vector-type
data.

This command must be used in an equation.

PROGRAM MAIN

COSSAMPLE (2, 30, K)
PRINT TP, X, CR

END
PROGRAM COSSAMPLE (L, R, X)

LOOP:
IF R > 180 THEN R = R – 360
IF R < –180 THEN R = R + 360
IF R > 180 OR R < –180 THEN GOTO LOOP
X = L * COS(R)
RETURN

END

 STE 80721
– 3-35 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Given (as arguments) a line segment with a length L and forming
an angle R with the X-axis, this program finds the length of the
x-component of the line segment and sends it back to the main
program as argument X.

 Y

 X

L

R

L cos R

 STE 80721
– 3-36 –

 ROBOT LANGUAGE MANUALseries Robot Controller

CR

Purpose This function outputs a CR (carriage return) code to the
communication channel.

PRINT [{COM0 | COM1 | TP},] {<character string> |
<expression>} [, {<character string> | <expression>}] ··· [, CR]

Format

Examples

Analysis
and

advice

PRINT COM1, K, CR
PRINT TP, CR

This function outputs a CR (carriage return) code to the
communication channel. For the communication channel,
select only one (1) from COM0, COM1, and TP. COM0 and TP
are the communication channels exclusively used for the teach
pendant. COM1 corresponds to the COM1 communication
channel of the controller.
Unless the communication channel is specified by the PRINT
command, data is output to the communication channel
exclusive to the teach pendant.
When CR is specified at the end of the PRINT command, a CR
code (0DH) is attached to the last of the data.
When the data has been output to COM0 (TP), it is displayed by
line feed.

 STE 80721
– 3-37 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Sample
program

PROGRAM COMSAMPLE
 PRINT TP, "*** INPUT N ***", CR
 INPUT TP, N

The characters are
displayed on the
teach pendant, which
are then subject to
line-feed.

 PRINT TP, N, CR
END

The value of "N" is displayed
on the teach pendant, which is
then subject to line-feed.

 STE 80721
– 3-38 –

 ROBOT LANGUAGE MANUALseries Robot Controller

CYCLE

Purpose
CYCLE is a system constant which is used to refer to the system
operating mode

Format CYCLE

IF MODE < > CYCLE THEN GOTO LOOP

Examples

Analysis
and

advice

Sample
program

CYCLE is used along with the MODE command to refer to the
system operating mode. When MODE = = CYCLE, the system
is operating in the cycle operation mode.

As a system constant, CYCLE has a value of 1. If you wanted
to, you could use it in your program as a constant having the
value 1. However, this is not a good idea since it makes your
program unnecessarily hard to understand.

You cannot substitute into system constants such as CYCLE.

For information on operating modes, refer to the MODE
command.

PROGRAM CYCLESMPL

LOOP:
MOVE A1
MOVE A2
MOVE A3
IF MODE <> CYCLE THEN GOTO LOOP

END

If the system is not operating in the cycle operation mode,
execution of the program will keep on returning to the beginning
of the loop and the robot will move over and over again.

.

 STE 80721
– 3-39 –

 ROBOT LANGUAGE MANUALseries Robot Controller

DATA

Purpose This function designates the start of a data block which defines
the position and coordinate data for the taught point. For details
of the data block, see Para. 5.3.5.

Format
DATA

DATA

Examples

The data block is edited by the data editor rather than the
program editor. If a format error occurs, the program editor is
used for editing.

Analysis
and

advice

Sample
program

PROGRAM MAIN
MOVE HOME

END

DATA
POINT HOME = 650, 0, 100, 0, 0 /RIGHTY

END

 STE 80721
– 3-40 –

 ROBOT LANGUAGE MANUALseries Robot Controller

DECEL

Purpose This command sets the fraction of full deceleration for the robot.

Format
DECEL = <expression>

DECEL = 80

Examples

Analysis
and

advice

DECEL = 0.8 * DECEL
MOVE A1 WITH DECEL = 90

DECEL is a system variable used to specify the acceleration of
the robot when the robot is decelerating. Acceleration is
expressed as a percentage of the standard (full) acceleration.

In the SCOL language, acceleration during acceleration and
acceleration during deceleration are set separately. In order to
set the acceleration during acceleration, use the ACCEL
command.

This is used to lower the acceleration as needed when the robot
is carrying a heavy load. In this case, change the acceleration
during both acceleration and deceleration. For the setting value
of the acceleration according to the load, see the "Transportation
and Installation Manual."

You may use a constant, variable or calculation for the
<expression> term. However, you may not enter vector-type
data.

This command must be used in an equation.

 STE 80721
– 3-41 –

 ROBOT LANGUAGE MANUALseries Robot Controller

An upper limit on deceleration is built into the controller to protect
the robot. The robot will not go over this limit even if you enter
a value larger than the upper limit. Should you enter such a
value, the robot will operate at the upper limit.

Values of 0 or less are taken as 1.

The current acceleration during acceleration can be viewed by
viewing the system variables.
The initial value for acceleration is 100%.

Sample
program

PROGRAM DECELSMPL

FOR K = 1 TO 100
DECEL = K

MOVE A1
MOVE A2

NEXT K
END

This program increases the acceleration from 1% to 100% in
steps of 1 %.

 STE 80721
– 3-42 –

 ROBOT LANGUAGE MANUALseries Robot Controller

DELAY

Purpose The DELAY command stops the movement of the robot arm for a
specified time.

DELAY <time>

Format

DELAY 0.5

Examples
DELAY T * 0.2

Analysis
and

advice

The DELAY command stops the movement of the robot arm for a
specified length of time.

The <time> designation is specified in units of seconds.

Since the execution precision is limited, try to keep your time
designation in units of 0.01 second or more. A constant,
variable or calculation may be used for the <time> designation.
However, you may not use vector-type data.

When the program stop operation is conducted while the DELAY
command is being executed, after the specified time elapsed, the
automatic operation is stopped. On the other hand, when the
automatic operation is cancelled with the servo off operation or
the emergency stop operation while the DELAY command is
being executed, the DELAY command is executed again when
the program is restarted.

DELAY is a movement control command in that it stops the
movement of the robot arm for a specified period of time. Keep
in mind that the DELAY command stops movement of the robot
and does not stop execution of the program itself.
When you want to delay the program itself, use the TIMER or
WAIT command.

 STE 80721
– 3-43 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Sample
program

PROGRAM DELAYSMPL
MOVE A1
DELAY 2
MOVE A2
DELAY 2
MOVE A3
DELAY 2

END

The robot will stop moving for 2 seconds after it completes each
move.

 STE 80721
– 3-44 –

 ROBOT LANGUAGE MANUALseries Robot Controller

DEST

Purpose The DEST command returns the destination of the present robot
command.

Format DEST

Examples A1 = DEST
X = DEST. X

and
Analysis The DEST command is used to refer to the destination of the

movement being executed on the world coordinate system at
that time.

DEST can be used just like any other positional vector-type.
However, you can only refer to the values it contains and cannot
change the values themselves.

Should the robot have come to rest after having positioned itself,
DEST will return the location of that position.

Sample
program

PROGRAM DESTSAMPLE
AA = A
MOVE A
ON DIN(1) DO AA = DEST
MOVE A1
MOVE A2
MOVE A3
MOVE A4
IGNORE DIN(1)
PRINT "POSITION DATA = ", AA.X, AA.Y, AA.Z

END

 STE 80721
– 3-45 –

 ROBOT LANGUAGE MANUALseries Robot Controller

This program moves the robot from point A1 to point
A4 while monitoring Input Signal 1. Should the signal turn on,
the target position (at that time) will be displayed on the teach
pendant.

 STE 80721
– 3-46 –

 ROBOT LANGUAGE MANUALseries Robot Controller

DIM …. AS ….

Purpose This function defines an array variable.

Format

Examples

Analysis
and

advice

DIM <array variable> (<number of elements>, <number of
elements>, …) AS <type>

DIM A (5) AS INT

This command is used to define the type and number of
elements of array variable.
The array variable can be defined only as the global variable
which can be accessed and modified from any position of the
defined program. The value of index of the array is 1 ~ No. of
elements. That is, in this example, it is 1 ~ 5. If the initial
value set is outside the index range, an error occurs at the
execution of SELECT command.
Also, access and substitution outside the index range cause an
error at program execution.

A total of five (5) types can be specified; INT (integer type),
REAL (real number type), POINT (position type), TRANS
(coordinate type) and PAYLOAD (load type).
The initial value of INT and REAL type array variables should be
described in the global block, and the initial value of POINT,
TRANS and PAYLOAD type array variables in the data block.

 STE 80721
– 3-47 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Sample
program

GLOBAL
DIM ICHI (3) AS POINT One dimensional array of position

type is declared.
END

PROGRAM DIMSAMPLE
ICHI (1) = P0
ICHI (2) = POINT (500.0, 0.0, 100.0, 0.0, 0.0, 0)
ICHI (3) = {500.0, –200.0, 100.0, 0.0, 0.0, 0}
FOR I = 1 TO 3

MOVE ICHI (I)
NEXT I

END
DATA
POINT P0 = 500.0, 200.0, 100.0, 0.0, 0.0 / LEFTY
POINT ICHI (I) = 650.0, 0.0, 100.0, 0.0, 0.0 / LEFTY

END

 STE 80721
– 3-48 –

 ROBOT LANGUAGE MANUALseries Robot Controller

DIN

Purpose The DIN command reads in the state (ON or OFF) of an input
signal (or signals).

Format

Examples

Analysis
and

advice

DIN(<signal name> [,<signal name>]...)

IF DIN(1) THEN GOTO LOOP
WAIT DIN (1, –2, 3)
ON DIN (J, J + 1, J + 2) DO RETURN

The DIN command reads in the state (ON or OFF) of an input
symbol. DIN is used in conjunction with an IF, WAIT or ON
command to judge external signals.

<signal name> specifies the signal number of a signal to be read
into the controller. A positive signal is considered to be ON and
a negative signal is considered to be OFF. Up to 10 signal
names can be specified. (Extra signal names exceeding 10
signal names are ignored.)

When the state of all the signals becomes as specified, DIN will
return a value of TRUE (1). If even one of the signals is not as
specified, DIN will return FALSE (0).

A constant, variable or calculation may be used for the <signal
name> specification. However, you may not use vector type
data.

 STE 80721
– 3-49 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Sample
program

PROGRAM DINSAMPLE
WAIT DIN(1)
MOVE A1
MOVE A2
MOVE A3

END

The robot will wait until Input Signal 1 turns on before starting to
move.

 STE 80721
– 3-50 –

 ROBOT LANGUAGE MANUALseries Robot Controller

DISABLE

Purpose The DISABLE command is used to disable system switches.

Format

Examples

Analysis
and

advice

DISABLE <switch> [, <switch>]...

DISABLE PASS
DISABLE PASS, NOWAIT

The DISABLE command is used to disable system switches
related to robot movement. There are three system switches.

(1) PASS
PASS is used to specify short-cut movement. Short-cut
movement is an operating mode in which the robot is
directed to begin its next move before completing the
positioning of its previous move. The timing for switching
over from the present movement to the next movement is
specified with the system variable PASS command.

Short-cut movement allows you to reduce the time it takes
the robot to get from one place to another. For more
information, refer to Section 5.

A DISABLE PASS statement will cancel short-cut
movement. The initial setting for the controller is DISABLE
PASS.

 STE 80721
– 3-51 –

 ROBOT LANGUAGE MANUALseries Robot Controller

(2) NOWAIT
NOWAIT specifies whether the controller should wait for the
robot to finish positioning itself before sending out (or taking
in) external signals. Signal output timing is explained in
Section 5.

A DISABLE NOWAIT statement directs the controller to wait
for the robot to finish positioning itself before send out (or
taking in) an external signal. The initial setting for the
controller is DISABLE NOWAIT.

(3) SWITCH
SWITCH determines whether the task change-over is
performed or not in the multitask operation.
The task change-over is prohibited by the DISABLE
SWITCH. In the initial setting, ENABLE SWITCH is
effective.

(4) MOVESYNC
Specifies the motion command synchronous mode or
motion command asynchronous mode. In the DISABLE
MOVESYNC state (i.e., motion command asynchronous
mode), the system pre-executes commands all the way to
just before four (4) (max.) motion commands ahead and
waits for the finish of positioning. If the system variable
PASS is set to “ENABLE”, short-cut (pass) motion is
allowed. The initial status is specified by the user
parameter [U03].

To make the system switch effective, use the ENABLE
command.

 STE 80721
– 3-52 –

 ROBOT LANGUAGE MANUALseries Robot Controller

PROGRAM DISABLESPL Sample

program MOVE A1
PASS = 80
ENABLE PASS
MOVE A2
MOVE A3
DISABLE PASS
MOVE A4
MOVE A5

END

The robot will move from point A1 to point A4 with short-cut
movement. From point A4 onward, the robot will move
normally.

A1 A2 A3 A5A4

MOVE A1

 STE 80721
– 3-53 –

 ROBOT LANGUAGE MANUALseries Robot Controller

DO

Purpose The DO command is used in conjunction with the ON command
to monitor conditions.

Format

Examples

Analysis
and

advice

ON <monitoring condition> [{BREAK | PAUSE}] DO <statement>

ON DIN (1) DO RETURN
ON TIMER DO MOVE A1

Should the <monitoring condition> be satisfied, the statement
following the DO command will be executed.
Condition monitoring is carried out no matter what kind of
movement the robot happens to be doing at the time.

The ON command is processed in parallel with robot motion
commands. Should a MOTION, MOTIONT, REMAIN or
REMAINT command be used as the monitoring condition,
monitoring of conditions for subsequent movement commands
will be performed. Should TIMER or ERROR be used as the
monitoring condition, conditions will be monitored independently
of robot movement.

When monitoring input signals with DIN or other such
commands, the timing with which monitoring begins will vary
depending on the setting of the NOWAIT system switch. When
an ENABLE NOWAIT statement is in effect, signals will be
monitored independently of robot movement.

When the DISABLE NOWAIT statement is in effect, monitoring of
the signal will start after the robot has completed the movement it
was executing at the time.

 STE 80721
– 3-54 –

 ROBOT LANGUAGE MANUALseries Robot Controller

The execution of the statement following the DO command will
start immediately after the execution of the command in effect
when the monitoring condition was satisfied. However, if you
happened to be executing a WAIT command, the WAIT
command will be cancelled immediately and program control will
shift to the statement following the DO command.

There are three types of execution timing you can specify for the
robot while in operation:

BREAK: BREAK will immediately stop all robot movement and
shift control to the statement following the DO
command.

PAUSE: The statement following the DO command is
executed after the movement now in progress
finishes. During arm movement, however, normal
program execution continues, except for the
subprogram call command, return command to main
program and motion command. At execution of
these commands, program execution stops until the
arm has stopped.

Default: The default setting will cause the movement in
progress to be completed while simultaneously
executing statements following the DO command.

When the statement following the DO command is a movement
command, always include a BREAK or PAUSE statement in the
DO command line.

If the statement following the DO command (i.e., DO statement)
and the motion command in the DO statement were executed,
after the arm movement has finished, program execution will
restart in accordance with conditions just before the condition for
the ON command was satisfied.

 STE 80721
– 3-55 –

 ROBOT LANGUAGE MANUALseries Robot Controller

(Should a WAIT command have been interrupted, program
execution will restart from the position where the WAIT command
was interrupted. However, should a program branch to a label
have been carried out with the statement following the DO
command, execution will start from the statement having that
label.

Ten sets of conditions can be monitored at once. Furthermore,
a maximum of four input signals may be specified with a single
ON command.

When multiple monitoring conditions become true at once, the
DO statement corresponding to the ON command having the
highest priority is executed. This priority is determined by the
order in which the ON commands were encountered in the
program, with the first ON command encountered having the
highest priority. DO statements corresponding to all other ON
commands are ignored.

Monitoring of a condition specified by one ON command will be
cancelled should execution shift to a DO statement
corresponding to another ON command. Also, conditions are
not monitored while program execution is halted due to a STOP
command or an error.

When the system timer is specified as the monitoring condition,
the condition is checked only when the monitoring conditions
have changed. When monitoring an external signal, an error
condition or a movement reference command (such as the
amount of a motion remaining to be performed), the controller
monitors the state, not the change, of that signal.

 STE 80721
– 3-56 –

 ROBOT LANGUAGE MANUALseries Robot Controller

The IGNORE command will cancel the monitoring of conditions
specified by an ON command. Monitoring of conditions will also
stop when a condition is satisfied and a statement following a
DO command is executed.

[Note 1]

At present, ON and DO commands may be combined only in the
ways shown below:

ON TIMER DO <statement>
When the timer becomes 0, execute the statement.

ON DIN () DO <statement>
When the state of the input signal(s) in the brackets () becomes
as specified, execute the statement. You cannot monitor more
than four signals at once with one such statement. Up to four
input signals can be specified. Extra input signals exceeding
four signals are ignored.

ON MOTION > = <expression> DO <statement>
Execute the statement when the amount of a motion which is to
be executed next to this command exceeds the specified value.
The only relational operand you can use with MOTION is > =.

ON MOTIONT > = <expression> DO <statement>
Execute the statement when the time required for a motion which
is to be executed next to this command exceeds the specified
time. The only relational operand you can use with MOTIONT
is > =.

ON REMAIN < = <expression> DO <statement>
Execute the statement when the remaining amount of a motion
which is to be executed next to this command is smaller than the
specified value.

The only relational operand you can use with REMAIN is < =.

ON REMAINT < = <expression> DO <statement>
Execute the statement when the remaining time required for a
motion which is to be executed next to this command is smaller
than the specified time.

 STE 80721
– 3-57 –

 ROBOT LANGUAGE MANUALseries Robot Controller

The only relational operand you can use with
REMAINT is < =.

[Note 2]

In a statement following the DO statement, the following
commands relating to the task control cannot be used.

TASK, KILL, SWITCH

If these commands are used in the DO statement and after, they
are inoperative. Condition monitor by the ON command is not
possible in the subtask.

[Note 3]

If a motion monitored under the condition of ON MOTION, ON
MOTIONT, ON REMAIN or ON REMAINT has been stopped, or
if the slow speed command has been specified during execution
of a monitored motion, the ON condition is cancelled.

PROGRAM MAIN Sample

program DOSAMPLE
MOVE P

END
PROGRAM DOSAMPLE

ON DIN(1) PAUSE DO RETURN
MOVE A1
MOVE A2
MOVE A3

WAIT MOTION >= 100
IGNORE DIN(1)
RETURN

END

Should signal 1 turn ON while a movement is being executed,
control will be returned to the main program after that movement
has been completed.

 STE 80721
– 3-58 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Cautions on DO statement:
For ON ~ DO command, the ON conditions to be monitored and
the DO statement which starts when the conditions are satisfied
are registered.

PROGRAM MAIN
SIG = 1
ON DIN (1) DO INPUT SIG
SUB
IGNORE DIN(1)
PRINT SIG

END

PROGRAM SUB
MOVE P
WAIT MOTION >= 100

END

In the above SCOL program, if DIN(1) is set ON during traverse
to P, the DO statement cannot be executed because the variable
SIG is not defined in the program SUB and there is no space for
saving the variable as input by the INPUT command. In this
case, the relevant DO statement can be executed normally by
defining the variable SIG as the global variable.
GLOBAL

SIG = 0
END
PROGRAM MAIN

SIG = 1
ON DIN(1) DO INPUT SIG
SUB
IGNORE DIN(1)
PRINT SIG

END
PROGRAM SUB

MOVE P
WAIT MOTION >= 100

END

 STE 80721
– 3-59 –

 ROBOT LANGUAGE MANUALseries Robot Controller

In the DO statement, even if the task changeover conditions are
established or the SWITCH command is executed, the task
cannot be changed over. If the TASK command or KILL
command is executed, an error occurs.

 STE 80721
– 3-60 –

 ROBOT LANGUAGE MANUALseries Robot Controller

DOUT

Purpose DOUT is used to output external signals.

DOUT (<signal name> [,<signal name>] ...)

Format

Examples

Analysis
and

advice

DOUT (1, 2, –3)
DOUT (J, J + 1, J + 2)

DOUT is used to output external signals.

<signal name> specifies the number (name) of a signal to be
output from the controller.

A positive signal is considered to be ON and a negative signal is
considered to be OFF. Up to ten signal names may be
specified in a signal DOUT command.

A constant, variable or calculation may be used for the <signal
name> specification. However, you may not use vector-type
data.

When the same signal is output consecutively after execution of
the DOUT command, signal output is not guaranteed. When
output of multiple signals is specified, the simultaneousness of
signal output timing is not guaranteed.

DOUT(-4,3,-2,1) Robot program in turn from the head DOUT(-4)
DOUT(3), DOUT(-2), DOUT(1) Resolving and being executed by
the robot program
In other words, it changes and the signal becomes a value for
the purpose with "1010"→"0010"→"0011"→"0001"→"0101" at
the number - the interval degree of hundreds of ms, being final
when executing the robot program which is called
DOUT(-4,3,-2,1) behind DOUT(4,-3,2,-1).

 STE 80721
– 3-61 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Sample
program

PROGRAM DOUTSAMPLE
FOR K = 1 TO 16
DOUT(K)
TIMER = 0.5
WAIT TIMER == 0
DOUT(–K)
NEXT K

END

This program will send out (turn on) output signals 1 to 16 in
order and in 0.5 second intervals.

 STE 80721
– 3-62 –

 ROBOT LANGUAGE MANUALseries Robot Controller

ELSE

Purpose

Format

The ELSE statement is used in combination with
IF ~ THEN constructions in order to judge conditions.

IF <logical expression> THEN <statement> [ELSE <statement>]

Examples

Analysis
and

advice

IF DIN (1) THEN K = K + 1 ELSE K = 0

ELSE is used in an IF statement to specify a statement to be
executed if the IF condition is not satisfied.

An ELSE statement is not mandatory in an IF construction. If
the IF condition is not satisfied and there is no ELSE statement,
program
execution will shift to the next command following the IF
command.

The <statement> following the THEN and ELSE statements
cannot contain PROGRAM, END, IF, FOR, NEXT or WAIT. For
more information on judging conditions, refer to the IF command.

Sample
program

PROGRAM ELSESAMPLE
IF DIN (1) THEN SPEED = 100 ELSE SPEED = 50
MOVE A1
MOVE A2
MOVE A3

END

Should Input Signal 1 be ON, the robot will operate at full (100%)
speed. If OFF, the robot will operate at half (50%) speed.

 STE 80721
– 3-63 –

 ROBOT LANGUAGE MANUALseries Robot Controller

ENABLE

Purpose

Format

The ENABLE command is used to put system switches into
effect.

ENABLE <switch> [, <switch>]...

Examples

Analysis
and

advice

ENABLE PASS
ENABLE PASS, NOWAIT

The ENABLE command is used to put system switches related
to robot movement into effect. There are four (4) system
switches.

(1) PASS
PASS is used to specify short-cut movement. Short-cut
movement is an operating mode in which the robot is
directed to begin its next move before completing its
previous move. The timing for switching over from the
present movement to the next movement is specified with
the PASS command.

Short-cut movement allows you to reduce the time it takes
the robot to get from one place to another. For more
information, see Section 5.

An ENABLE PASS statement specifies short-cut
movement. The initial setting for the controller is DISABLE
PASS.

(2) NOWAIT
NOWAIT specifies whether the controller should wait for the
robot to finish positioning itself before sending out (or taking
in) external signals. Signal output timing is explained in
Section 5.

 STE 80721
– 3-64 –

 ROBOT LANGUAGE MANUALseries Robot Controller

An ENABLE NOWAIT statement directs the controller to
send out (or take in) external signals without waiting for the
robot to finish positioning itself. The initial setting for the
controller is DISABLE NOWAIT.

(3) SWITCH
SWITCH determines whether the task change-over is
performed or not in the multitask operation.
The task change-over is prohibited by the DISABLE
SWITCH. In the initial setting, ENABLE SWITCH is
effective.

(4) MOVESYNC
 Specifies the motion command synchronous mode or

motion command asynchronous mode.
In the ENABLE MOVESYNC state (i.e., motion command
synchronous mode), the system executes all the way to just
before the next motion command and waits for the finish of
positioning. The initial status is specified by the user
parameter [U03].
In the MOVESYNC mode, short-cut (pass) motion is not
allowed, irrespective of the status of system variable PASS.
If the system variable PASS is set to “DISABLE” in the
SCOL program, short-cut (pass) motion is allowed.

 To make the system switch ineffective, use the DISABLE
command.

 STE 80721
– 3-65 –

 ROBOT LANGUAGE MANUALseries Robot Controller

PROGRAM ENABLESMPL Sample

program MOVE A1
PASS = 80
ENABLE PASS
MOVE A2
MOVE A3
DISABLE PASS
MOVE A4
MOVE A5

END

This program directs the robot to move A1 to point A4 with
short-cut movement point A3 to point A5 without short-cut
movement.

A1 A2 A3 A5A4

MOVE A1

 STE 80721
– 3-66 –

 ROBOT LANGUAGE MANUALseries Robot Controller

END

Purpose

Format

The END statement marks the end of a program.

END

END

Examples

Analysis
and

advice

The END statement marks the end of a program.

When operating in the cycle operation mode, the program will
stop by the END statement of the main task generated
automatically at the start of the program. In the continuous
operation mode, program execution will be returned to the start
of the program and the program will repeat itself.

When executing a program as a subprogram, you should have a
RETURN command in the line above the END statement. Even
if you forget to put in a RETURN command, however, control will
still be sent back to the main program when the END statement
is encountered.

PROGRAM marks the beginning of a program and END marks
the end. The program itself is sandwiched between the two. If
you do not have an END statement, you will get an error
message.
After the END statement in the main program has been
executed, the values of internal variables are cleared.

 STE 80721
– 3-67 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Sample
program

PROGRAM ENDSAMPLE
MOVE A1
MOVE A2
MOVE A3

END

From PROGRAM to END, this program will be executed as a
single program.

 STE 80721
– 3-68 –

 ROBOT LANGUAGE MANUALseries Robot Controller

EXP

Purpose

Format

The EXP function returns the exponent of a number to the power
e.

EXP (<expression>)

Examples

Analysis
and

advice

K = EXP (3.5)
J1 = N * EXP (L – K)

This function is used to calculate the exponent of an
<expression> to the power e. (e = 2.71828...)

A constant, variable or calculation may be used for the
<expression> term. However, you may not use vector-type
data. This command must be used in an equation.

PROGRAM MAIN

Sample
program EXPSAMPLE (5, K)

PRINT TP, K, CR
END
PROGRAM EXPSAMPLE (N, K)

K = EXP (N)
RETURN

END

This subprogram takes an argument N, finds the exponent of
that argument to the base e, calls the result K, and sends control
back to the main program.

 STE 80721
– 3-69 –

 ROBOT LANGUAGE MANUALseries Robot Controller

FINE

Purpose

Format

FINE is a system constant used to set the positioning accuracy
to fine.

FINE

ACCUR = FINE

Examples

Analysis
and

advice

MOVE A1 WITH ACCUR = FINE

The FINE statement is used with ACCUR command to set
positioning accuracy to FINE. The system constant has a value
of 1. This value can be used as constant 1 in the expression.
However, do not do it since it makes your program unnecessarily
complicated.

You cannot substitute into system constants.
For information on positioning accuracy, refer to the ACCUR
command.

Sample
program

PROGRAM FINESAMPLE
ACCUR = FINE
MOVE A1
MOVE A2
MOVE A3

END

This program sets the positioning accuracy to FINE before
moving around the robot.

 STE 80721
– 3-70 –

 ROBOT LANGUAGE MANUALseries Robot Controller

FOR

Purpose

Format

FOR directs a section of the program to repeat itself.

FOR <variable> = <expression 1> TO <expression 2>
[STEP<express ion 3>)
 • • • •
NEXT [<variable>)

Examples

Analysis
and

advice

FOR K = 1 TO 4
 • • • •
NEXT K

FOR N = K1 TO K1 + K2 STEP K3
 • • • •
NEXT N

The FOR commands directs a part of the program to repeat
itself.
The program block between the FOR command and the NEXT
command is executed repeatedly. The block will keep on
repeating itself until the condition specified by the FOR statement
is satisfied.

When a FOR statement is executed, the value of <expression 1>
is substituted into the <variable>. When the NEXT statement is
executed, the value of <expression 3> specified by the STEP
statement is added on to the <variable>.

Should the value of the <variable> become greater than the
value of <expression 2> at this time, the execution of the
program will shift to the statement following the NEXT command.
If <variable> is not greater than <expression 2>, the program
execution will branch (go back) to the statement following the
FOR statement.

 STE 80721
– 3-71 –

 ROBOT LANGUAGE MANUALseries Robot Controller

The values of <expression 1>, <expression 2> and <expression
3> used in the FOR construct are those in effect when the FOR
statement was first executed. Therefore, even should these
values be changed while executing the loop, the number of times
the loop is repeated will not change.

The <variable> should be used only to control the number of
times the loop is repeated. Therefore, do not change the value
of the <variable> while executing the loop.

If the value of <expression 3> is 1, you may omit statements
after the STEP statement.

A constant, variable or calculation may be used for <expression
1>, <expression 2> or <expression 3>. However, you may not
use vector-type data.

For the corresponding NEXT statement, you should specify the
variable specified by the FOR statement.

If you do not specify <variable> in the NEXT statement, a loop is
made between the nearest FOR statement (executed finally) and
the NEXT statement.

When another FOR command (being nested) is used in a FOR –
NEXT loop, the number of nesting levels should be 32 levels or
less.
When the number of nesting levels exceeds 32 levels, an error
occurs.

Note 1: A FOR loop is ended by the NEXT command.
Therefore, no matter what, the loop will be executed at
least once.

 STE 80721
– 3-72 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Note 2: Real numbers may be used for the <variable>,
<expression 1>, <expression 2> or <expression 3>.
However, since there is a certain imprecision when
handling real numbers, try to use integers when telling
the FOR statement how many times to repeat itself.
Furthermore, values substituted into the <variable>,
<expression 1>, <expression 2> or (expression 3> are
converted into the data type when the loop is executed.
Data types are converted as shown below.

(1) When the <variable> data type is undefined when a FOR
statement is executed:
The data type of a variable will be undefined should the
identifier used for the <variable> appear for the first time
in the program in the FOR command. In such a case, all
data will be converted to and processed as the data type
of <expression 1>.

(2) When the <variable> data type has been defined before a
FOR statement is executed:
When the identifier (used for the variable) has been used
in the program beforehand, the data type of the
<variable> will be the same as the data type of the data
which was first entered into that <variable>.

Example:

PROGRAM SAMPLE
J1 = 5
FOR J1 = 0.1 TO 0.9 STEP 0.01

MOVE A1
MOVE A2

NEXT J1
END

 STE 80721
– 3-73 –

 ROBOT LANGUAGE MANUALseries Robot Controller

When the above program is executed, the data type of J1
is defined as the integer type before the FOR command
is executed. Therefore, all variables used in the FOR
command are converted into the integer type.
Therefore, the controller will interpret the above FOR
statement as:
FOR J1 = 0 TO 0 STEP 0
Consequently, the FOR loop will only be executed once.

Note 3: When the FOR statement is used in the following
manner, an error will occur.

(1) FOR J1 = ...

FOR J2 = ...
 ...
NEXT J1

Here, you are missing a NEXT statement corresponding
to the FOR J2 statement.

 (2) FOR K = ...
...
IF DIN(1) THEN GOTO L1
...
NEXT K
...
L1:
A branch command from the inside to the outside of the
loop or vise versa is not allowed.

 STE 80721
– 3-74 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Sample
program

PROGRAM FORSAMPLE
FOR K = 1 TO 100

MOVE A1
MOVE A2

NEXT K
END

The robot will make 100 trips back and forth between A1 and A2.

 STE 80721
– 3-75 –

 ROBOT LANGUAGE MANUALseries Robot Controller

FREE

Purpose

Format

FREE is a system constant used to make the robot configuration
as undefined.

FREE

CONFIG FREE

Examples

Analysis
and

advice

MOVE A1 WITH CONFIG = FREE

The FREE system constant is used along with the CONFIG
command in order to specify the robot configuration as
undefined.

FREE has the value of 0. If you wanted to, you could use
FREE in your program as a constant having the value 0.
However, do not do this since it makes your program hard to
read.

You cannot change (substitute into) system constants including
FREE.
For information on robot configuration, see the "CONFIG
command."

Sample
program

PROGRAM FREESAMPLE
CONFIG = FREE
MOVE A1
MOVE A2

END

This program will make the robot configuration undefined before
beginning to move the robot.

 STE 80721
– 3-76 –

 ROBOT LANGUAGE MANUALseries Robot Controller

FREELOAD

Purpose

Format

The FREELOAD command will zero the data for the load acting
on the end of the robot hand.

FREELOAD

Examples

Analysis
and

advice

FREELOAD

The FREELOAD command will zero the data for the load acting
on the end of the robot hand.
In order that the robot operate effectively under various loads,
the SCOL language makes it possible to set load data acting on
the end of the robot hand. It is important that the robot know
this information so that it does not damage itself by swinging
around too quickly.

Loads acting on the robot hand are set with the system variable
PAYLOAD. The controller uses these values to calculate
control constants for robot acceleration and deceleration that are
appropriate for the load.

Load data consists of values for the load mass and the load
moment of inertia.
When a FREELOAD command is executed, all load data will
become 0. This is true for both mass load data and inertia load
data.
This command will not work if you do not have the file SCOL.LIB
in the controller RAM drive.

 STE 80721
– 3-77 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Sample
program

PROGRAM FREELOADSL
PAYLOAD=HAND
MOVE A1
CLOSE1
DELAY 0.5
MOVE A2 WITH PAYLOAD=HAND + MOTOR
OPEN1
DELAY 0.5
MOVE A3
FREELOAD
MOVE A2
MOVE A3

END

This program sets the load data to zero before moving around
the robot.

 STE 80721
– 3-78 –

 ROBOT LANGUAGE MANUALseries Robot Controller

GAIN

Purpose

Format

The GAIN command is used to specify whether the gain (for
servo control) is ON or OFF for each axis.

GAIN = {<expression>, <expression>, <expression>,
<expression>, <expression>}

GAIN = {0, 0, 1, 0, 0}

Examples

Analysis
and

advice

MOVE A1 WITH GAIN = {,, ON}

The GAIN command is used to specify whether the gain (servo
control) of each axis is to be ON or OFF.

Should the GAIN be specified as OFF, servo control for that axis
will stop the next time a movement command is executed.
Axes for which servo control has been stopped are in the servo
free state (in which positioning control is not carried out) and can
be moved around freely by external forces.

Positioning checks are not performed for axes for which the gain
is OFF. Furthermore, should you give a movement command to
one of those axes, the axis will not move.

This command is used when, for example, one is fitting a part
into a hole in a workpiece.

By turning off all the gains except for the Z-axis (which must be
on so you can move the hand up and down), all the axes (except
for the Z-axis) are free (i.e., not locked up) and the robot hand
can move freely in the horizontal direction. This allows the
robot to move horizontally along with the workpiece and fit in the
part in the hole even should the workpiece and part not be
aligned exactly.

 STE 80721
– 3-79 –

 ROBOT LANGUAGE MANUALseries Robot Controller

The GAIN command is treated as a system variable having five
values (that correspond to the five axes). The programmer
specifies which gains are to be on and off for each axis in the
{ } brackets following the GAIN commands.

Specifications are divided by commas with the first specification
corresponding to Axis 1, the second to Axis 2, and so on. A "0"
means that the gain is to be OFF and a "1" means that the gain
is to be ON. Should specifications be abbreviated (for example,
{,, ON}), the controller will assume all non-specified gains to be
OFF.

You may use constants, variables or calculations for the
<expression> terms. You may also use the system constants
ON and OFF. (ON sets the gain on, and OFF sets the gain off.)
However, you may not use vector-type data.

You must always synchronize the execution of a GAIN command
with the movement of the robot. That is, be sure that the GAIN
command is executed after the previous movement command is
completed (as seen in the sample program).

Should you execute a GAIN command while the robot is still
moving, the robot may move incorrectly. For more information
on setting gains in synchronization with the robot movement, see
the "SETGAIN command."

Even should you complete automatic operation and switch over
to the manual mode, the GAIN settings will not change. In
order to turn on gains which have been turned off in the manual
mode, push the corresponding guide keys for those axes while in
the guide mode.

When a selected gain value is not more than 0 for ON and not
less than 1 for OFF, 0 and 1 are considered to be specified.

 STE 80721
– 3-80 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Sample
program

PROGRAM GAINSAMPLE
MOVE A1
WAIT MOTION > = 100
GAIN = {OFF, OFF, ON, OFF, OFF}
MOVE A2
OPEN1
DELAY 0.5
MOVE A1
WAIT MOTION > = 100
GAIN = {ON, ON, ON, ON, ON}
READY

END

This program turns off all gains except that for the Z-axis (Axis 3)
before moving the robot to point A2.

PROGRAM GMOVE
G = GAIN
GAIN = {,, ON}
MOVE P1
WAIT MOTION > = 100
GAIN = G
MOVE P2

END

This program turns off the gains on all axes except Axis 3 (the
Z-axis), and later restores the gains to their original state after
moving.

 STE 80721
– 3-81 –

 ROBOT LANGUAGE MANUALseries Robot Controller

GLOBAL

Purpose This function specifies the global variable area.

Format

Examples

Analysis
and

advice

GLOBAL

GLOBAL

A = 10
END

The global variable which can be referred to and substituted from
any part of the program is defined. To identify the type of a
variable other than the array, setting of an initial value in the
substitution format is required.

As the array variable defines the type and number of elements
by DIM command and sets the initial value separately, some may
not have an initial value.

The following types can be used for the global variable area.

Integer type, real number type, position type, coordinate type
and load type.

Combination of the above variables with the array.

Specify the variable definition of integer type and real number
type, and initial values of integer type and real number type
arrays in global blocks, and the variable definition of position
type, coordinate type and load type, and initial values of position
type, coordinate type and load type arrays in data blocks.

 STE 80721
– 3-82 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Sample
program

GLOBAL
A = 1

END

PROGRAM TEST

A = A + 1
PRINT “A=”, A, CR

END

 STE 80721
– 3-83 –

 ROBOT LANGUAGE MANUALseries Robot Controller

GOTO

Purpose

Format

The GOTO command specifies that the execution of the program
is to be branched to the location marked by the label of the
GOTO command.

GOTO <label>

Examples IF DIN(1) THEN GOTO L1
GOTO LOOP
GOTO RESTART

Analysis
and

advice

The GOTO command specifies that the execution of the program
is to be branched to the location marked by the label of the
GOTO command.

Branching locations for the GOTO command are limited to
statements in the same program. Should there be no location in
the program corresponding to the GOTO label, you will get an
error. Furthermore, should you have several statements with
the same label in the same program, the controller will not know
where to go and you may get an error.

In order to label a branching location, put the label name
(identifier) at the beginning of the statements you wish to
execute. Be sure to put a colon after the identifier.

 STE 80721
– 3-84 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Sample
program

PROGRAM GOTOSAMPLE
MOVE A1
LOOP:

MOVE A2
MOVE A3

GOTO LOOP
END

When the program is executed finally, the program goes back to
the label LOOP.

 STE 80721
– 3-85 –

 ROBOT LANGUAGE MANUALseries Robot Controller

GOTO ()

Purpose

Format

Examples

This command will cause the execution of the robot to branch off
depending on the value of the expression in the brackets.

GOTO (<expression>) <label> [, <label>]….

GOTO (K) LABEL1, LABEL2, LABEL3
GOTO (N1 – N2) L1, L2, L3, L4, L5

Analysis
and

advice

The GOTO () command will cause the execution of the
program to be branched off in accordance with the value in the
brackets ().

When the value in the brackets (i.e., the <expression>) is 1, the
program will branch off to the <label> furthest to the left. When
the value in the brackets is 2, the program will branch off to the
<label> second furthest to the left, and so on. Up to 10 labels
can be specified. Extra labels exceeding 10 labels are ignored.

Should the value in the brackets be greater than the number of
labels or should the value be zero or less, program execution will
proceed to the statement following the GOTO statement.
Should the value in the brackets be a real number, all decimal
points will be cut off and what remains will be treated as an
integer.

You may use constants, variables or equations for the
<expression> term However, you may not use vector-type data.

 STE 80721
– 3-86 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Branching locations for the GOTO () command are limited to
statements in the same program. Should there be no location in
the program corresponding to the specified GOTO () label, you
will get an error. Furthermore, should you have several
statements with the same label in the same program, the
controller will not know where to go and you may get an error.

In order to label a branching location, put the label name
(identifier) at the beginning of the statements you wish to
execute. Be sure to put a colon after the identifier.

PROGRAM MAIN

Sample
program INPUT N

GOTOSAMPL2 (N)
END
PROGRAM GOTOSAMPL2 (N)

GOTO (N) L1, L2, L3
RETURN
L1: MOVE A1
RETURN
L2: MOVE A2
RETURN
L3: MOVE A3
RETURN

END

If the argument N is 1, 2 or 3, the robot will move to point A1, A2
or A3 respectively. If N is not 1, 2 or 3, program execution will
be sent back to the main program without moving the robot.

 STE 80721
– 3-87 –

 ROBOT LANGUAGE MANUALseries Robot Controller

HERE

Purpose

Format

Examples

The HERE statement returns the current position of the robot.

HERE

MOVE HERE
A1 = HERE
X = HERE. X

Analysis
and

advice

The HERE command returns the current position of the robot on
the world coordinate system.
HERE can be handled just like any other positional- type data
with the exception that you can only refer to the values contained
inside and cannot change the values themselves.
When a HERE command is executed while the robot is moving,
the commanded position HERE at the time of HERE command
execution is returned.

Note: The position returned with the HERE command is the
position commanded to the robot. Note that while the robot is
moving, the actual current position of the robot has a delay from
the commanded position.
It is possible to acquire the posture of the present robot by the
HERE command.

N=HERE.6
The value of the present posture is stored in N.
With a SCARA robot, the value of HERE.6 is 0 for Free
(undefined), 1 for Left-handed system, or 2 for Right-handed
system.

 STE 80721
– 3-88 –

 ROBOT LANGUAGE MANUALseries Robot Controller

PROGRAM HERESAMPLE Sample

program AA=A
MOVE A
ON DIN(1) DO AA=HERE
MOVE A1
MOVE A2
MOVE A3
MOVE A4
IGNORE DIN(1)
PRINT "POSITION DATA=",AA.X,AA.Y,AA.Z
END
Input signal 1 is monitored during the robot moves from A1 to A4.
The current position when the signal turns on is displayed on the
teach pendant.

 STE 80721
– 3-89 –

 ROBOT LANGUAGE MANUALseries Robot Controller

HEXIN

Purpose This function reads input signals in the hexadecimal notation.

HEXIN (<signal name>, <signal length>)

Format

Examples

Analysis
and

advice

K = HEXIN (1, 2)
J2 = HEXIN (N, N+2)
GOTO (HEXIN (20, 2)) L1, L2, L3

This function reads the input signals of <signal length> in the
hexadecimal notation, starting with the signal specified by
<signal name>.
When K = HEXIN (1, 2), for instance, the state of two (2) input
signals 1 and 2 is read as the HEX code.
The signal length can be specified in the range of 1 ~ 32. As
the input signal number increases, it corresponds to higher-order
bit accordingly. Each signal is coded as follows.
ON = 1, OFF = 0

Example: When the state of input signals 1 ~ 12 is as shown in
the table below, the value of "HEXIN (1, 12)" is 809
(i.e., 329 in the hexadecimal notation).

Input signal
number 12 11 10 9 8 7 6 5 4 3 2 1

Input signal
state OFF OFF ON ON OFF OFF ON OFF ON OFF OFF ON

Binary
expression 0 0 1 1 0 0 1 0 1 0 0 1

Hexadecimal
expression 3 2 9

 STE 80721
– 3-90 –

 ROBOT LANGUAGE MANUALseries Robot Controller

You can use a constant, variable, expression and calculation for
<signal name> and <signal length>. You cannot use the
vector-type data, however.
This command is used in the expression.

Sample
program

PROGRAM HEXINSAMPL
K = HEXIN (1, 7)
SPEED = K
MOVE A1
MOVE A2

END

The state of input signals 1 ~ 7 is coded, the motion speed is set
according to such a value, then the robot moves at the set
speed.

 STE 80721
– 3-91 –

 ROBOT LANGUAGE MANUALseries Robot Controller

HEXOUT

This function outputs signals by coding them in the hexadecimal
notation.

Purpose

Format HEXOUT (<signal name>, <signal length>, <expression>)

HEXOUT (1, 4, 3)

Examples

Analysis
and

advice

HEXOUT (N, N+4, K)

This function codes the value of <expression> in the
hexadecimal notation and outputs the digits specified by <signal
length> to the number of the signals as specified by <signal
length>, starting with the signal specified by <signal name>.
When HEXOUT (1, 4, 3) is commanded, for instance, the value
of "3" which is coded in the hexadecimal notation is output to the
four signals (1 ~ 4), and output signals 1 and 2 become ON.
As the output signal number increases, it corresponds to
higher-order bit accordingly. The signal length can be specified
in the range of 1 ~ 32. If the value of <expression> exceeds the
value specified by <signal length>, the high-order digit or digits
are ignored. As the input signal number increases, it
corresponds to higher-order bit.
Each signal is coded as follows.
ON = 1, OFF = 0

Example: When HEXOUT (1, 12, 952) is commanded, the
output signals are as shown below.

 STE 80721
– 3-92 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Decimal
expression 952

Hexadecimal
expression 3 B 8

Binary
expression 0 0 1 1 1 1 0 1 1 0 0 0

Output signal
number 12 11 10 9 8 7 6 5 4 3 2 1

Output signal
state OFF OFF ON ON ON ON OFF ON ON OFF OFF OFF

You can use a constant, variable, expression and calculation for
<signal name>, <signal length> and <expression>. You cannot
use the vector-type data, however. If the same signals are
output consecutively, the signal output last becomes effective.
Be careful of agreement's there being in the signal range by
which it is possible to guarantee simultaneous-ness.
The simultaneous-ness of HEXOUT to the range of the 16 bit
carving from DOUT1, DOUT101, DOUT301 can be guaranteed
but the simultaneous-ness of HEXOUT which strides the
boundary can not be guaranteed.

Sample
program

PROGRAM HEXOUTSMPL
FOR K = 1 TO 4
J = 2 ^ (K–1)
HEXOUT (1, 4, J)
TIMER = 0.5
WAIT TIMER == 0
HEXOUT (1, 4, 0)
NEXT K

END

Output signals 1 ~ 4 are output in turn at intervals of 0.5 second.

 STE 80721
– 3-93 –

 ROBOT LANGUAGE MANUALseries Robot Controller

IF

Purpose The IF statement is used for judging conditions.

IF <logical expression) THEN <statement> [ELSE <statement>]

Format

Examples

Analysis
and

advice

IF DIN (1) THEN K = K + 1 ELSE K = 0

If the conditions of the <logical expression> following IF are
satisfied, the <statement> following THEN will be executed. If
the conditions are not satisfied, the statement following ELSE will
be executed.

An ELSE statement is not mandatory in an IF construction. If
the IF condition is not satisfied and there is no ELSE statement,
program execution will shift to the next step following the IF
command.

The <statement> following the THEN or ELSE statement may
not contain PROGRAM, END, IF, FOR, NEXT or WAIT.

IF ~ THEN ~ ELSE constructs are considered as a single unit,
and for that reason they all have to be on the same line. (That
means you must write everything following the ELSE statement
on that line.)

 STE 80721
– 3-94 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Sample
program

PROGRAM IFSAMPLE
IF DIN (1) THEN K = 1 ELSE K = 0
MOVE A1
MOVE A2
MOVE A3
PRINT TP, K, CR

END

Should Input Signal 1 be ON, K will equal 1.
Should Input Signal 1 be OFF, K will equal 0.

 STE 80721
– 3-95 –

 ROBOT LANGUAGE MANUALseries Robot Controller

IGNORE

Purpose The IGNORE command is used to cancel the monitoring of a
condition specified by a previous ON command.

Format
IGNORE <monitoring condition>

IGNORE DIN (1)

Examples

Analysis
and

advice

IGNORE TIMER

The IGNORE command is used to cancel the monitoring of a
condition specified by a previous ON command.

In the <monitoring condition> specification, use the exact same
logical expression as you used for the corresponding ON
statement.

However, the ON condition statement that can be ignored should
be specified before the IGNORE command line. At this time,
the same ON condition should not be specified on two (2) or
more lines.

When the IGNORE statement is executed, monitoring of the
condition will cease.

For more information on condition monitoring, refer to the ON
command.

 STE 80721
– 3-96 –

 ROBOT LANGUAGE MANUALseries Robot Controller

PROGRAM MAIN

Sample
program IGNORESMPL

MOVE P
MOVE P2

END
PROGRAM IGNORESMPL

ON DIN (1) PAUSE DO RETURN
MOVE A1
MOVE A2
WAIT MOTION > = 100
IGNORE DIN (1)
RETURN

END

Should Input Signal 1 go on, execution will return to the main
program after the motion in progress at the time is completed.
Monitoring of Input Signal 1 will cease when the movement from
point A1 to point A2 is completed.

 STE 80721
– 3-97 –

 ROBOT LANGUAGE MANUALseries Robot Controller

INITPLT

Initializes a pallet.

INITPLT (<pallet number>, <i>, <j>, <k>)

INITPLT (1, 5, 4, 3)

This function is used to initialize the pallet to execute the
palletizing command (MOVEPLT).

Pallet number : Number assigned to the pallet, starting with
number "1" (i.e., any integer larger than "1").

 i : Number of elements from pallet home point to
point I (i.e., any integer larger than "1").

 j : Number of elements from pallet home point to
point J (i.e., any integer larger than "1").

 k : Number of elements from pallet home point to
point K (i.e., any integer larger than "1").

If the value of i, j or k is zero (0) or less, the program stops with
an error message saying “ERR!! ELEMENT IS TOO SMALL”
shown on the teach pendant display.

The INITPLT command is available in the dynamic link library.
When executing this command, library build-in and global
variable should be declared in the GLOBAL area.

For further information, see Appendix G–1.

Examples

Analysis
and

advice

Format

Purpose

 STE 80721
– 3-98 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Sample
program GLOBAL

LOADLIB PALLET.LIB Library build-in declaration.
DIM PLTP (1, 7) AS POINT Global variable declaration.

END

PROGRAM SAMPLE
INITPLT (1, 3, 4, 2) Pallet initialization to "3 × 4 × 2"

with teach points PLTP (1, 1) ~
PLTP (1, 4).

MOVEPLT (1, 1, 0, 0, 0, 0) Move to pallet No. 1, element No.
1.

END

 STE 80721
– 3-99 –

 ROBOT LANGUAGE MANUALseries Robot Controller

INPUT

Purpose The INPUT command reads in data from a specified
communications channel.

Format

Examples

Analysis
and

advice

INPUT[{COM0 | COM1 | TP},] <variable> [, <variable>]…

INPUT K1, K2, K3
INPUT COM1, K

The INPUT command is used to read in data from a
communication channel. This data may be either real or integer
numbers.

Specify one (1) communication channel from COM0, COM1, and
TP. COM0 and TP are channels used solely for the teach
pendant. COM1 corresponds to controller COM1
communication channel.

If you do not specify a communication channel in your INPUT
statement, data will be read in from the teach pendant
communication channel.

When an INPUT command is executed, the program will wait
until the data is read in from the communication channel.

Data which has been read in will be placed in the assigned
variable(s). If there is more data than there are variables,
excess data will be ignored. If there is less data than there are
variables, the program will wait until the remaining data comes
in.

When inputting data from the teach pendant, keep real numbers
separate with commas. When you are done entering the
numbers, push the EXE key.

 STE 80721
– 3-100 –

 ROBOT LANGUAGE MANUALseries Robot Controller

When inputting data from anywhere other than the teach
pendant, the data will be processed when transmission is
completed. For information on data communication, refer to the
Communication Manual.

After the moving arm has stopped, this command is not
executed.

PROGRAM INPUTSMPL Sample

program PRINT COM0, "*** INPUT N1, N2, N3 ***"
INPUT COM0, N1, N2, N3
PRINT (N1 + N2 + N3)/3, CR
END

This program will read in three values (N1, N2 and N3) from the
teach pendant, find the average, and display the average on the
teach pendant.

 STE 80721
– 3-101 –

 ROBOT LANGUAGE MANUALseries Robot Controller

INT

Purpose The INT command changes a numerical value into an integer.

Format

Examples

Analysis
and

advice

INT (<expression>)

AK = INT (–20.345)
N = INT (K)
J1 = K – INT (N – 28.5)

The INT command converts the number or calculation result in
the brackets () to an integer.
Note that the INT command simply cuts off real numbers to the
right of the decimal point and converts them into integer.

This command is used when one wants to specify the data type
of a variable as an integer-type.

You may use constants, variables or equations for the
<expression> term. However, you may not use vector-type
data.

The INT command must be used in an expression.

PROGRAM MAIN

Sample
program INTSAMPLE (2, 30, K)

PRINT TP, K, CR
END
PROGRAM INTSAMPL (L, R, K)

K = INT (L * COS (R))
RETURN

END

This program takes in arguments L and R, finds the value of (L *
COS (R)), cuts off any decimal places and returns the result as
argument K to the main program.

 STE 80721
– 3-102 –

 ROBOT LANGUAGE MANUALseries Robot Controller

KILL

Purpose This function determines the multitask operation.

Format

Examples

Analysis
and

advice

KILL (<expression>)

KILL (TASKID)

The KILL command terminates the task which has the task
number specified by the calculation result of the expression in
brackets ().

If the task ID (settled on 1) of main task generated automatically
at the start of program or the non-existing task ID is specified,
NOP operation is effective. The task terminated by the KILL
command starts by the TASK command. When this happens, a
new number is assigned to the task number.

The constant, variable and arithmetic expression can be used for
the <expression>. The vector type data cannot be used.
The task for which stop is specified is to be deleted from the
system at the time when it is executed. That is, if system
variable SWITCH is DISABLE, task changeover will not occur
and other tasks cannot be stopped. To execute the KILL
command, set system variable SWITCH to ENABLE.

This command is invalid during step execution

 STE 80721
– 3-103 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Sample
program

GLOBAL
MAXTASK=2
K=0

END

PROGRAM MAIN
TID1=0
LOOP:
IF DIN(1) AND TID1==0 THEN TID1=TASK(“SUB1”)
IF DIN(–1) AND TID1<>0 THEN KILL(TID1)ELSE GOTO
LOOP1
TID1=0
LOOP1:
MOVEA 1, –90
MOVEA 1,90
GOTO LOOP

END
PROGRAM SUB1

K=K+1
PRINT K,CR

END

A task is created when the input signal 1 is turned on, which is
cleared when the same signal is turned off.

 STE 80721
– 3-104 –

 ROBOT LANGUAGE MANUALseries Robot Controller

LATCH (Option of TS3000)

This function specifies ON/OFF of the position latch function,
using the exclusive input port signals. Purpose

Format

LATCH

DISABLE LATCH

Examples

Analysis
and

advice

ENABLE LATCH

This function specifies whether the exclusive input port signals
should be monitored or not monitored to latch the position.
To turn on and off the system switch, use the ENABLE and
DISABLE commands, respectively.
When the ENABLE LATCH command is specified, the position
latch function, using the exclusive input port signals, becomes
effective.
When the DISABLE LATCH command is specified, the same
function becomes ineffective.
In the initial state, the DISABLE LATCH command takes effect.
If the start edge detection of the exclusive input port signal is
specified and the ENABLE LATCH command is used during the
exclusive port signal ON, the operation of the position latch
function cannot be guaranteed.
The same is also applicable if the fall edge detection of the
exclusive input port signal is specified and the ENABLE LATCH
command is used during the exclusive port signal OFF. When
this happens, however, no error is generated and the processing
continues.
Only after confirming the state of the exclusive input port signal
by means of the DIN command, program the ENABLE LATCH
command. The exclusive input port signals are assigned to 53
through 56.

 STE 80721
– 3-105 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Also, after confirming the state of LATCHSIG1 and 2, acquire the
latch position.
When you use this function, you should provide an exclusive
board. If the ENABLE LATCH command is executed while the
system is not provided with an extension board, an error occurs.
This function cannot be added to the TSL3000.

PROGRAM LATCHSMP

DISABLE NOWAIT
Sample
program

MOVE A0
LATCHTRG1 = 1
IF DIN (49) THEN GOTO FINI
ENABLE LATCH
MOVES A1
WAIT MOTION >= 100
IF LATCHSIG1 == 1 THEN LP = LATCHPSN1

ELSE LP = HERE
DISABLE LATCH
FINI:
MOVE LP

END

 STE 80721
– 3-106 –

 ROBOT LANGUAGE MANUALseries Robot Controller

LATCHTRG1 ~ 8 (Option of TS3000)

This function specifies the detected edge direction of the position
latch function, using the exclusive input port signals. Purpose

Format

LATCHTRG1 = {0 | 1}
LATCHTRG3 = {0 | 1}

LATCHTRG1 = 1

Examples

Analysis
and

advice

A = LATCHTRG8

These are the system variables for specifying the detected edge
direction which serves as the trigger of the position latch, using
the exclusive input port signals.
LATCHTRG1 ~ 8 specify the detected edge direction of the
exclusive input ports.
When "0" is specified, the signal falls (ON → OFF). Likewise,
when "1" is specified, the signal starts up (OFF → ON).
A numeric value other than the integers cannot be specified for
LATCHTRG1 ~ 8. If a value other than "0" is specified, the
system takes it as "1".
When you refer to this system variable, you can refer to the
current edge direction detected. The default of the detected
edge direction is "1" (OFF → ON).
If the detected edge direction is changed during execution of the
ENABLE LATCH command, the operation of the position latch
function cannot be guaranteed. When this happens, however,
no error is generated and the processing continues.
To identify the programmed operation, execute the DISABLE
LATCH command, then change the detected edge direction.
When you use this function, you should provide an exclusive
board. If LATCHTRG1 ~ 8 is specified in the system without an
extension board, however, the operation is not affected at all.
This function cannot be added to the TSL3000.

 STE 80721
– 3-107 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Sample
program

PROGRAM LATCHSMP
DISABLE NOWAIT
MOVE A0
LATCHTRG1 = 1
IF DIN (49) THEN GOTO FINI
ENABLE LATCH
MOVES A1
WAIT MOTION >= 100
IF LATCHSIG1 == 1 THEN P1 = LATCHPSN1

ELSE P1 = HERE
DISABLE LATCH

LATCHTRG2 = 0
IF DIN (–50) THEN GOTO FINI
ENABLE LATCH
MOVES A2
WAIT MOTION >= 100
IF LATCHSIG2 == 1 THEN P2 = LATCHPSN2

ELSE P2 = HERE
DISABLE LATCH

FINI:
MOVE A0

END

 STE 80721
– 3-108 –

 ROBOT LANGUAGE MANUALseries Robot Controller

LATCHSIG1 ~ 8 (Option of TS3000)

This function refers to the position latch state, using the
exclusive input port signals. Purpose

Format

LATCHSIG1
LATCHSIG5

A = LATCHSIG1

Examples

Analysis
and

advice

IF LATCHSIG2 ==0 THEN GOTO ERR

This function refers to whether the position has been latched,
using the exclusive input port signals.
LATCHSIG1 ~ 8 refer to the position latch state of the exclusive
input ports. When the position is latched, the system returns
"1". Otherwise, it returns "0". During execution of the
DISABLE LATCH command, the system returns "0", irrespective
of the exclusive signal state. Also, if the exclusive signal has
turned off during edge detection at signal startup, the state of
LATCHSIG1 ~ 8 becomes "0". Likewise, if the exclusive signal
has turned on during edge detection at signal fall, the state of
LATCHSIG1 ~ 8 becomes "0".
LATCHSIGN1 ~ 8 can only be referred to and cannot be
substituted. Also, LATCHSIGN1 ~ 8 cannot be used as the ON
condition.
If you wish to refer to the signal under the ON condition, you
should refer to 49 ~ 56, using the DIN command.
When you use this function, you should provide an exclusive I/O
board. If LATCHSIG1 ~ 8 is referred to in the system without
extension I/O board, however, the system always returns "0".

 STE 80721
– 3-109 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Note: The latch state identified by LATCHSIG1 ~ 8 is the
current robot state. Real robot motion is delayed due
to processing of the SCOL program.
It is recommended to get the latch state and latch
position only after execution of "WAIT MOTION >=
100".
This function cannot be added to the TSL3000.

Sample
program

PROGRAM LATCHSMP
DISABLE NOWAIT
MOVE A0
LATCHTRG1 = 1
IF DIN (49) THEN GOTO ERR
ENABLE LATCH
MOVES A1
WAIT MOTION >= 100
IF LATCHSIG1 == 0 THEN GOTO ERR
LP = LATCHPSN1
DISABLE LATCH
GOTO FINI
ERR:
PRINT "LATCH ERROR", CR
LP = HERE
FINI:
MOVE LP

END

 STE 80721
– 3-110 –

 ROBOT LANGUAGE MANUALseries Robot Controller

LATCHPSN1 ~ 8 (Option of TS3000)

This function gets the latch position, using the position latch
function.

Purpose

Format

LATCHPSN1
LATCHPSN2

P1 = LATCHPSN1

Examples

Analysis
and

advice

AX = LATCHPSN2. X

This function gets a position in the world coordinate system
when the edge of the exclusive input port signal has been
detected.
LATCHPSN1 ~ 8 get the detected edge position of exclusive
input ports 1 ~ 8 in the world coordinate system.
Specify the detected edge direction by LATCHTRG1 ~ 8.
Processing of edge detection becomes effective in the ENABLE
LATCH mode, which is ineffective in the DISABLE LATCH mode.
LATCHPSN1 ~ 8 can be referred to when the state of
corresponding LATCHSIG1 ~ 8 is "1". Even if the state of
LATCHSIG1 ~ 8 is "0", LATCHPSN1 ~ 8 can be referred to, but
the value cannot be guaranteed.
When you use this function, you should provide an exclusive
board. If LATCHPSN1 ~ 8 is referred to in the system without
an extension board, however, the origin of the world coordinate
system is indicated.

This function cannot be added to the TSL3000.

Note: The latch state identified by LATCHSIG1 ~ 8 is the
current robot state. Real robot motion is delayed due
to processing of the SCOL program.
It is recommended to confirm the latch state and latch
position only after execution of "WAIT MOTION >=
100".

 STE 80721
– 3-111 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Sample
program

PROGRAM LATCHSMP
DISABLE NOWAIT
MOVE A0
LATCHTRG1 = 1
IF DIN (49) THEN GOTO ERR
ENABLE LATCH
MOVES A1
WAIT MOTION >= 100
IF LATCHSIG1 == 0 THEN GOTO ERR
LP = LATCHPSN1
DISABLE LATCH
GOTO FINI
ERR:
PRINT "LATCH ERROR", CR
LP = HERE
FINI:
MOVE LP

END

 STE 80721
– 3-112 –

 ROBOT LANGUAGE MANUALseries Robot Controller

LEFTY

Purpose LEFTY is a system constant used to change over the
configuration of the robot to a left handed system.

Format

Examples

Analysis
and

advice

LEFTY

CONFIG = LEFTY
MOVE A1 WITH CONFIG = LEFTY

LEFTY is used in conjunction with CONFIG in order to set the
robot configuration to a left handed system.

As a system constant, LEFTY has the value of 1. If you wanted
to, you could use it in your program as a constant having the
value 1.
However, this is not a good idea since it makes your program
unnecessarily complicated.

You cannot substitute into system constants.

For Cartesian coordinate robots, designation of robot
configuration is ignored.

For information on robot configuration, refer to the CONFIG
command.

Sample
program

PROGRAM LEFTYSMPL
CONFIG = LEFTY
MOVE A1
MOVE A2

END

This program will set the robot configuration to a left handed
system before moving the robot on its way.

 STE 80721
– 3-113 –

 ROBOT LANGUAGE MANUALseries Robot Controller

LN

Purpose

Format

This function calculates the natural logarithm of a number.

LN (<expression>)

Examples

Analysis
and

advice

K = LN (100)
J1 = 1 – N (50 – D)

The LN command will return the natural logarithm of the number
in the brackets (). However, be warned that the result of LN
(0) will be returned as 0 (when in fact it is undefined and would
be expected to be returned as an error).

You may use constants, variables or equations for the
<expression> term. However, you may not use vector-type
data.

The LN command must be used in an expression.

PROGRAM MAIN PROGRAM LNSMPL (N, K) Sample

program LNSMPLE (3, K)
PRINT TP, K, CR

END
PROGRAM LNSMPL (N, K)

K = 10 ^ N
K = LN (K)
RETURN

END

This program will take the value of a constant logarithm given by
the argument N, convert this value into a natural logarithm, and
send the result back to the main program as argument K.

 STE 80721
– 3-114 –

 ROBOT LANGUAGE MANUALseries Robot Controller

LOADLIB

Purpose
This function reads a dynamic link library.

Format LOADLIB <file name>

Examples LOADLIB PALLET.LIB

Analysis
and

advice

Sample
program

Be sure to declare the LOADLIB command in the GLOBAL area.
The library file name is ********.LIB.

Up to five (5) libraries can be read in the same program.

For the dynamic library, see Para. 2.8.3 and Appendix G.

GLOBAL

LOADLIB PALLET.LIB Library build-in declaration
END
PROGRAM MAIN

INPUT N
GOTOSAMPL2 (N)

END

PROGRAM GOTOSAMPL2 (N) Example of library file
GOTO (N) L1, L2, L3
RETURN
L1:
MOVE A1
RETURN
L2:
MOVE A2
RETURN
L3:
MOVE A3
RETURN

END

 STE 80721
– 3-115 –

 ROBOT LANGUAGE MANUALseries Robot Controller

LOG10

Purpose

Format

This function calculates the common logarithm of a number.

LOG10 (<expression>)

Examples

Analysis
and

advice

K = LOG10 (100)
J1 = 1 – LOG10 (50 – D)

The LOG10 command will return the common logarithm of the
number in the brackets (). However, be warned that the
result of LOG10 (0) will be returned as some undefined number
(when in fact it would be expected to be returned as an error).

You may use constants, variables or equations for the
<expression> term. However, you may not use vector-type
data.

The LOG10 command must be used in an expression.

PROGRAM MAIN Sample

program LOG10SAMPLE (3, K)
PRINT TP, K, CR

END
PROGRAM LOG10SMPL (N, K)

K= EXP (N)
K= LOG10 (K)
RETURN

END

This program will take the value of a natural logarithm given by
the argument N, convert this value into a common logarithm, and
send the result back to the main program as argument K.

 STE 80721
– 3-116 –

 ROBOT LANGUAGE MANUALseries Robot Controller

MAXTASK

Purpose This function specifies the maximum number of tasks that can be
executed at the same time in the program containing the
multitask function.

Format

Examples

Analysis
and

advice

MAXTASK

MAXTASK = 4

This variable can be used only in the global data block.

Normally, specify the value of "No. of TASK commands + 1" for
this variable. The maximum value is four (4).

If a plural number of tasks are used, only the last value takes
effect.

Unless the multitask function is used, this variable need not be
used. When this happens, the default value is 1 and the work
area of only the main task is maintained.

The work area of the controller is assigned to each task, divided
equally by this variable. If a large value is specified, the work
area that can be used by one (1) task reduces and a large-sized
program cannot be executed.

 STE 80721
– 3-117 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Sample
program

GLOBAL
A=0
MAXTASK=2

END
PROGRAM MAIN

ID=0
ID=TASK ("SUB")
LOOP:
IF DIN(1) THEN A=1 ELSE A=0
GOTO LOOP

END
PROGRAM SUB

ENABLE NOWAIT
IF A==0 THEN PRINT "A", A, CR

END

As one (1) subtask is
used, "2" is set.

A loop is formed in the
GOTO statement to
prevent repeated call
of the task command.

 STE 80721
– 3-118 –

 ROBOT LANGUAGE MANUALseries Robot Controller

MOD

Purpose

Format

The MOD function returns the remainder of a division operation.

<expression> MOD <expression>

N = K MOD 3

Examples

Analysis
and

advice

J = K + (L MOD M)

The MOD function will take the <expression> on the left, divide it
by the <expression> on the right, and send back the remainder.

You may use constants, variables or equations for the
<expression>. However, you may not use vector-type data.

The MOD command must be used in an expression.

PROGRAM MAIN

Sample
program MODSAMPLE (5.0, 3.0, K)

PRINT TP, K, CR
END
PROGRAM MODSAMPLE (N1, N2, K)

K = N1 MOD N2
RETURN

END

This program argument N2, main program takes argument N1,
divides it by and sends the result back to the as argument K.

 STE 80721
– 3-119 –

 ROBOT LANGUAGE MANUALseries Robot Controller

MODE

Purpose

Format

MODE is used to refer to the system operating mode

MODE

Examples

Analysis
and

advice

IF MODE < > CONT THEN STOP

MODE is used to refer to the system operating mode.

Should the value of MODE be 0, the system is in the continuous
operation mode. If 1, the system is in the cycle operation mode,
and if 2, the system is in the segment operation mode.

When referring to the system operating mode, you may use the
system constants CONT, CYCLE and SEGMENT. As you
would expect, MODE = = CONT puts the system in the
continuous operation mode, MODE = = CYCLE puts the system
in the cycle operation mode, and MODE = = SEGMENT puts the
system in the segment operation mode.

The monitor command MODE MOTION can be used to specify
segment operation.

Sample
program

PROGRAM MODESAMPLE
MOVE A1
MOVE A2
IF MODE <> CONT THEN STOP
MOVE A3

END

This program will stop executing itself should the system change
out of the continuous operation mode.

 STE 80721
– 3-120 –

 ROBOT LANGUAGE MANUALseries Robot Controller

MOTION

Purpose

Format

The MOTION statement is used to refer to the amount of a
motion that has been completed.

MOTION

K = MOTION

Examples

Analysis
and

advice

ON MOTION > – 50 DO DOUT (1)

The MOTION statement can be used to see what percentage of
a robot motion has been completed.

The "amount of motion" is defined as the percentage of a motion
completed by the robot with respect to the total distance to be
covered by that motion. Calculations for the amount of motion
are carried out for the axis that has the greatest distance to
travel.

The amount of motion is returned as a real number.
By combining the MOTION statement with an ON command, the
robot can be made to send out signals while a motion is still in
progress. This statement must be used in an expression.

Note: The amount of motion referenced with this command is
the position commanded to the robot. Note that while
the robot is moving, the current position of the robot has
a delay from the command position.
Be careful because == can't be used for the comparative
operator.

 STE 80721
– 3-121 –

 ROBOT LANGUAGE MANUALseries Robot Controller

With ENABLE PASS when using, be careful because an infinite
loop is worked depending on how to use.
Because the path orbit formation wait to P2 has occurred from
P1, the following example becomes an infinite loop.
By replacing with the WAIT sentence, it is possible to avoid an
infinite loop.

ENABLE PASS
PASS=50
MOVE P1 →
LOOP1:
IF MOTION < 95 THEN GOTO LOOP1
MOVE P2

ENABLE PASS
PASS=50
MOVE P1
WAIT MOTION >= 95
MOVE P2

Sample
program

PROGRAM MOTIONSMPL
ENABLE NOWAIT
ON MOTION > = 50 DO DOUT (1)
MOVE A1
ON MOTION > = 80 DO DOUT (2)
MOVE A2

END

When the robot hand is 50% of the way to point A1, Signal 1 will
be output. When the robot hand is 80% of the way to point A2,
Signal 2 will be output.

 STE 80721
– 3-122 –

 ROBOT LANGUAGE MANUALseries Robot Controller

MOTIONT

Purpose

Format

The MOTIONT statement is used to refer to the amount of time
passed since a motion has begun.

MOTIONT

Examples

Analysis
and

advice

K = MOTIONT
ON MOTIONT > = 5 DO DOUT (1)

The MOTIONT statement can be used to see how much time
has passed since a certain motion has started.

Execution time is given as a real number in units of seconds.
The execution time will change to 0 when the robot has
completed final positioning for that movement.

By combining the MOTIONT statement with an ON command,
the robot can be made to send out signals while a motion is still
in progress. When this statement monitors travel time per one
movement of the robot over the specified time, it can handle the
error.
The MOTIONT command must be used in an expression.

Be careful because == can't be used for the comparative
operator.

Note: The amount of motion referred with the MOTION
command is the position commanded to the robot. Note
that while the robot is moving the current position of the
robot has a delay from the command position.
Be careful because == cannot be used for the
comparative operator.
With ENABLE PASS when using, be careful because an
infinite loop is worked depending on how to use.
Because the path orbit formation wait to P2 has occurred
from P1, the following example becomes an infinite loop.

 STE 80721
– 3-123 –

 ROBOT LANGUAGE MANUALseries Robot Controller

By replacing with the WAIT sentence, it is possible to
avoid an infinite loop.

ENABLE PASS
PASS=50
MOVE P1 →
LOOP1:
IF MOTION < 5 THEN GOTO LOOP1
MOVE P2

ENABLE PASS
PASS=50
MOVE P1
WAIT MOTION >= 5
MOVE P2

Sample
program

PROGRAM MOTIONTSMPL
ENABLE NOWAIT
ON MOTIONT > = 10 DO DOUT (1)
MOVE A1
MOVE A2

END

Should the robot take more than 10 seconds to complete a
motion to A1, Signal 1 will be output immediately.

 STE 80721
– 3-124 –

 ROBOT LANGUAGE MANUALseries Robot Controller

MOVE

Purpose

Format

The MOVE command moves the robot to a specified position.

MOVE <position> [WITH clause]

Examples

Analysis
and

advice

MOVE A1
MOVE A1 WITH SPEED = 50

The MOVE command moves the robot to the specified position
in synchronous motion.

All the robot joints will start and stop moving at the same time.
The controller will adjust the speeds of the joints relative to the
slowest joint for that motion accordingly. This is called
synchronous motion (or sometimes joint angle interpolation).

You may use a positional vector for <position>. Also, you may
directly specify the coordinate values for <position> in either of
the two ways shown below.

You cannot use either coordinate type data or load type data for
<position>.

MOVE POINT (X, Y, Z, C, T, <configuration>)
MOVE {X, Y, Z, C, T} WITH CONFIG = <configuration>

(You should try to use the POINT command whenever possible
to make it clear what data type you are handling.)

For both methods shown above:

X, Y, Z, C, T : Coordinate values X, Y, Z, C and T are
specified with real numbers (in units of
millimeters or degrees).

<Configuration>: The configuration of the robot is specified by
an integer value of 0, 1 or 2.
(0 = undefined (FREE); 1 = left hand system;
2 = right hand system)

 STE 80721
– 3-125 –

 ROBOT LANGUAGE MANUALseries Robot Controller

You may use a constant, a variable or a calculation for each
individual element. However, you may not use vector-type data
for an element. Anything less than 0 which is entered as the
<configuration> will be treated as 0, and anything greater than 2
will be treated as 2.
Individual data elements may be omitted, but these omitted
elements will all be treated as 0. For example, the two
statements below mean the same thing:

MOVE POINT (100, 100, 0, 0, 0, RIGTHY)
MOVE POINT (100, 100)

(Everything from Z to <configuration> will be taken as 0.)

When entering positional data from the teaching pendant, work
coordinate system data specified at the time of teaching will also
be recorded. When a movement command is executed, the
work coordinate system will change over to that specified at the
time the positional data was taught. Note, however, that base
and tool coordinates will stay as they were before the command
was executed.

When directly specifying the coordinate values of <position>
(sometimes along with creating or manipulating positional data
with commands such as DEST, HERE and POINT), movements
are performed with the work coordinate system in effect before
the command was executed.

The controller will figure out movement conditions such as speed
and acceleration using the system variable values in effect at the
time. Should you wish to change a movement condition for one
operation, use a WITH command to specify that condition.
Refer to the WITH command for more information.

 STE 80721
– 3-126 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Sample
program

PROGRAM MOVESAMPLE
MOVE A1
MOVE A2

END

This program will move the robot to point A1 with synchronous
motion.

 STE 80721
– 3-127 –

 ROBOT LANGUAGE MANUALseries Robot Controller

MOVEA

Purpose

Format

MOVEA moves a specified robot joint to a specified position.

MOVEA <axis>, <absolute position> [WITH clause]

MOVEA 1, 60

Examples

Analysis
and

advice

MOVEA 3, 0 WITH GAIN = {,, ON}

The MOVEA command moves a specified robot joint to a
specified position. Such movement is called "absolute single
axis motion."

The <axis> designation contains an integer from 1 to 5 and
specifies the robot joint to be moved. All other axes besides that
specified will not move.

The <absolute position> designation specifies the destination of
that movement relative to the origin of that axis. For rotary
joints, <absolute position> is in terms of degrees. For linear
(direct drive) joints, <absolute position> is in terms of millimeters.
Should you specify an <absolute position> outside of the range
of that joint, the robot will move to the position just before the
end of that limit. Constants, variables or calculations may be
used for the <axis> and <absolute position> designations.
However, you may not use vector-type data.

Should you use anything other than 1 to 5 for the <axis>
specification, or should you designate an axis which your robot
does not have, the robot does not move.

 STE 80721
– 3-128 –

 ROBOT LANGUAGE MANUALseries Robot Controller

The controller will figure out movement conditions such as speed
and acceleration with the system variable values in effect at the
time. Should you wish to change a movement condition for one
operation, use the WITH command to specify that condition.
Refer to the WITH command for more information.

PROGRAM MOVEASAMPL Sample

program MOVEA 1, 0
MOVEA 2, 90

END

This program will move Axis 1 to its 0 degree position.

 STE 80721
– 3-129 –

 ROBOT LANGUAGE MANUALseries Robot Controller

MOVEC

Purpose

Format

MOVEC moves the robot hand to a specified position through a
specified passing position in circular interpolation.

MOVEC <passing position> <position> [WITH clause]

MOVEC A1 A2

Examples

Analysis
and

advice

MOVEC A1 A2 WITH SPEED = 10

The tip of the robot hand is moved in a circular path connected
among the current position, <passing position> and <position>.
The tip of the hand is moved in the direction from the current
position to <position> at a constant angular velocity.

Specify position type data to <passing position> and <position>.
Like the MOVE and MOVES commands, with the POINT
command, a coordinate value can be directly specified.

You cannot use either coordinate type data or load type data for
<passing position> and <position>.

[Work coordinate system]
In the work coordinate system, the tip of the robot hand is moved
as taught for both <passing position> and <position>.
When the work coordinate system is specified with the WITH
clause, the tip of the hand will be moved work coordinate
system. When a coordinate value is directly specified for
<passing position> and <position>, the tip of the hand will be
moved in the work coordinate system when the command is
executed.

[WITH clause]
When the robot is moved, the moving conditions such as speed
and acceleration will be determined depending on the setting
values of the system variables at the time. To change the
moving conditions for one motion, use the WITH clause.
Refer to the WITH command for more information.

 STE 80721
– 3-130 –

 ROBOT LANGUAGE MANUALseries Robot Controller

[Limitation of restoration after canceling circular interpolation]
After a motion of circular interpolation is cancelled by "ON ~
BREAK ~ DO ~," feed hold, emergency stop, or a trouble, when
the execution is resumed without resetting the program (when a
motion is cancelled by "ON ~ BREAK ~ DO ~" and resumed with
the RESUME command), the cancelled command is
re-executed. At that time, the motion of circular interpolation
works as linear motion of interpolation to <position>.

[Limitation of position relationship of three points]
When three or two positions of three points forming an arc
(present position, <passing position>, and <position>) are the
same or very close, the tip of the robot hand may be moved
along an arc which differs from that expected.
When a motion of circular interpolation is used during a short-cut
motion, the path of the robot should be connected to the tangent
of the circular. When the angle becomes sharp, at a joint of
circular interpolation of the short-cut motion, an abrupt
acceleration may be applied to the robot.

[Tool offset]
When the hand is moved linearly or in circular interpolation with
a tool being offset while changing the orientation of the tool,
unless the tool offset is properly set, the specified motion may
not be obtained.
The tool offset is used in teaching positions. Before teaching
the positions, it is necessary to check that the tool offset is
correctly set.

(For the selecting method of the tool coordinate system, see
"6.7.6 Tool Coordinate Selection" of the "Operator’s Manual.")
When a tool being offset is used, before teaching the positions, it
is necessary to set the tool offset. In addition, at the beginning
of the robot language program, with the TOOL command,
securely specify the correct tool offset.

 STE 80721
– 3-131 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Example: PROGRAM MAIN
TOOL=TOOL1 Use "TOOL1" as tool offset after

that.
...

END

[About the 5th axis addition (the option)]
When adding (the option) the 5th axis, be careful because it
isn't possible for an arc interpolation to be worked about the 5th
axis. Among the other axes, an arc interpolation is worked.

PROGRAM MOVECSAMPL Sample

program MOVES A1
MOVEC A2 A3

END

Moves the hand from A1 to A2 in arc interpolation.

 STE 80721
– 3-132 –

 ROBOT LANGUAGE MANUALseries Robot Controller

MOVEI

Purpose

Format

MOVEI moves a specified robot joint by a specified amount from
its present position.

MOVEI <axis>, <relative position) [WITH clause]

MOVEI 1, 60

Examples

Analysis
and

advice

MOVEI 3, 10 WITH SPEED = 50

The MOVEI command moves a specified robot joint by a
specified amount from its position at the time. Such movement
is called "relative single axis motion."

The <axis> designation contains an integer from 1 to 5 and
specifies the robot joint to be moved. All other axes besides
that specified will not move.

The <relative position> designation specifies the amount of that
movement relative to the position of that joint at the time. For
rotary joints, <relative position> is in terms of degrees. For
linear (direct drive) joints, <relative position> is in terms of
millimeters. Should you specify an <relative position> outside
of the range of that joint, the robot will move to the position just
before the end of that limit.

Constants, variables or calculations may be used for the <axis>
and <relative position> designations. However, you may not
use vector-type data.

Should you use anything other than 1 to 5 for the <axis>
specification, or should you designate an axis which your robot
does not have, the robot does not move.

 STE 80721
– 3-133 –

 ROBOT LANGUAGE MANUALseries Robot Controller

The controller will figure out movement conditions such as speed
and acceleration with the system variable values in effect at the
time. Should you wish to change a movement condition for one
operation, use the WITH command to specify that condition.
Refer to the WITH command for more information.

Sample
program

PROGRAM MOVEISAMPL

MOVEI 1, 30 This program will move Axis 1 to a
position 30 degrees from its current
position.

MOVEI 2, 30 This program will move Axis 2 to a
position 30 degrees from its current
position.

MOVEI 3, 30 This program will move Axis 3 to a
position 30 degrees from its current
position.

MOVEI 4, 30 This program will move Axis 4 to a
position 30 degrees from its current
position.

END

 STE 80721
– 3-134 –

 ROBOT LANGUAGE MANUALseries Robot Controller

MOVEJ

Purpose Moves the robot to the specified position along an arch.

Format MOVEJ <position> <definition of arch>

Examples

Analysis
and

advice

MOVEJ A1 AC WITH SPEED=30
MOVEJ A1 {50.0, 20.0, 30.0}

This function is used to move the robot to the specified position
along an arch.
Like the MOVE command, the robot moves by PTP
(point-to-point) control. That is, at horizontal movement in the
arch motion, the robot will not move along a straight line.

<Position> specifies the final target position in the MOVEJ
motion. The positional data can be used for <position>.
<definition of arch> defines the profile of the arch motion by
value. The positional data is used for <definition of arch>.
Only three (3) elements are valid for <definition of arch>.
(Values of elements 4 ~ 6 are ignored.)

<definition of arch> = {<recess move distance>, <Z-axis move
distance 1>, <Z-axis move distance 2>}

The coordinate data and load data cannot be used for <position>
and <definition of arch>.

 STE 80721
– 3-135 –

 ROBOT LANGUAGE MANUALseries Robot Controller

<Recess move distance>

<Z-axis move distance 1>

Motion start point

<Z-axis move distance 2>

<Position>

<recess move distance> signifies the distance from the motion
start point to the highest position in the Z-axis direction in units of
"mm". The value of <recess move distance> should be a real
number larger than 0.0. If a negative value is specified for
<recess move distance>, an error is generated.

<Z-axis move distance 1> designates the move distance of axis
3 only in the up direction in units of "mm". The value of <Z-axis
move distance 1> should be a real number larger than 0.0. If a
negative value is specified for <Z-axis move distance 1>, an
error is generated.
If <Z-axis move distance 1> is larger than the move distance in
the up direction, the system interprets that the move distance in
the up direction is designated.

<Z-axis move distance 2> designates the move distance of axis
3 only in the down direction in units of "mm". The value of
<Z-axis move distance 2> should be a real number larger than
0.0. If a negative value is specified for <Z-axis move distance
2>, an error is generated.

If <Z-axis move distance 2> is larger than the move distance in
the down direction, the system interprets that the move distance
in the down direction is designated.

It is also possible to directly designate the values for <position>
and <definition of arch> in the following manner.

 STE 80721
– 3-136 –

 ROBOT LANGUAGE MANUALseries Robot Controller

MOVEJ POINT(X, Y, Z, C, T, <configuration>) POINT (Z1, Z2,
Z3)
MOVEJ {X, Y, Z, C, T} {Z1, Z2, Z3} WITH
CONFIG=<configuration>

(To identify the type of data, use the POINT command.)

X, Y, Z, C, T : Specify a real number for each coordinate
of X, Y, Z, C, T. (Unit: mm, degree)

<Configuration> : Specify the robot configuration by an
integer of 0 ~ 2.
(0: Undefined, 1: Lefty, 2: Righty)

Z1, Z2, Z3 : Specify a real number for defining the arch
profile. (Unit: mm)

The MOVEJ command composes the movements in the up,
horizontal and down directions, and will not draw an arc. Also,
to give priority to the highest position in the Z-axis direction, the
movements in the up and down directions are not composed.
If the move distance in the up or down direction is smaller than
the movement in the horizontal direction, the Z-axis move
distance may be larger than the specified value.

If the configuration at the motion start point of the MOVEJ
command differs from the target configuration, the configuration
changes in the horizontal movement.

The value of already moved distance shown by the MOTION
command at the execution of the MOVEJ command is the
percentage of the lapse of time to the total movement time of the
MOVEJ command. Likewise, the value of distance to go shown
by the REMAIN command is the percentage of the remaining
time to the total movement time of the MOVEJ command.

When the MOVEJ command has been interrupted by BREAK,
the distance to go in the up direction, distance to go in the down
direction, distance to go of Z-axis in each direction and target
position are maintained.

 STE 80721
– 3-137 –

 ROBOT LANGUAGE MANUALseries Robot Controller

To resume the operation, the MOVEJ command is created again
based on these data. Therefore, if the robot has been moved
by manual guide, etc. during interruption by BREAK, the midway
pass cannot be assured.

The MOVEJ command cannot allow a short-cut movement in the
interval with other motion command (including the MOVEJ
command).

PROGRAM MOVEJSAMPL Sample

program P1 = POINT (300.0, 350.0, 50.0, 0.0, 0.0)
P2 = POINT (300.0, –350.0, 100.0, 0.0, 0.0)
ARCH = POINT (100.0, 40.0, 50.0)
MOVE P1
MOVEJ P2 ARCH

END

 STE 80721
– 3-138 –

 ROBOT LANGUAGE MANUALseries Robot Controller

MOVEPLT

Moves the robot to the specified position on the pallet.

MOVEPLT (<pallet number>, <element number> X, Y, Z, C)

MOVEPLT (1, 10, 0, 0, 50, 0)

This function is used to move the robot to the position which is
specified by the pallet number and element number and includes
X, Y, Z, C offsets. The offset value zero cannot be omitted.

Before executing the MOVEPLT command, appropriate pallet
should be initialized by means of the INITPLT command.

The MOVEPLT command is available in the dynamic link library.
When executing this command, library build-in and global
variable should be declared in the GLOBAL area.

If the element number is zero (0) or less or larger than the
maximum number of elements, the program stops with the
following error message shown on the teach pendant display.

When element number < 1: “ERR!! ELEMENT NO. IS TOO
SMALL”

When element No. > i × j × k of INITPLT:
“ERR!! ELEMENT NO. IS TOO
LARGE”

For further information, see Appendix G–1.

Examples

Analysis
and

advice

Format

Purpose

 STE 80721
– 3-139 –

 ROBOT LANGUAGE MANUALseries Robot Controller

GLOBAL

Sample
program LOADLIB PALLET.LIB Library build-in declaration.

DIM PLTP (1, 7) AS POINT Global variable declaration.
END

PROGRAM SAMPLE
INITPLT (1, 3, 4, 2) Pallet initialization to "3× 4×2"

with teach points PLTP (1, 1) ~
PLTP (1, 4).

MOVEPLT (1, 1, 0, 0, 50, 0) Move to position of 50 mm of
pallet 1, element No. 1.

OPEN1
MOVEPLT (1, 1, 0, 0, 0, 0) Move to pallet 1, element No. 1.
CLOSE1
MOVEPLT (1, 1, 0, 0, 50, 0) Move to position of 50 mm of

pallet 1, element No. 1.
END

 STE 80721
– 3-140 –

 ROBOT LANGUAGE MANUALseries Robot Controller

MOVES

Purpose

Format

The MOVES command moves the robot by linear interpolation to
a specified position.

MOVES <position> [WITH clause]

Examples

Analysis
and

advice

MOVES A1
MOVES A1 WITH GAIN = {,, ON}

The MOVES command moves the robot to the specified position
along a path determined by linear interpolation.

This command will cause the robot to move from its current
position to a specified position along a straight line which ties the
two together. This kind of movement is called linear
interpolated motion. Under such motion, the linear speed of the
robot hand will remain constant (except during acceleration and
deceleration).

You may use a positional vector for <position>. Also, you may
directly specify the coordinate values for <position> in either of
the two ways shown below.

You cannot use the coordinate type data or load type data for
<position>.

MOVES POINT (X, Y, Z, C, T, <configuration>)
MOVES (X, Y, Z, C, T) WITH CONFIG = <configuration>

(You should try to use the POINT command whenever possible
to make it clear what data type you are handling.)

X, Y, Z, C, T: Coordinate values X, Y, Z, C and T are
specified with real numbers (in units of
millimeters or degrees).

 STE 80721
– 3-141 –

 ROBOT LANGUAGE MANUALseries Robot Controller

<configuration>: The configuration of the robot is specified by
an integer value of 0, 1 or 2.

 (0 undefined (FREE); 1 = left hand system;
2 right hand system)

You may use a constant, a variable or a calculation for each
individual element. However, you may not use vector-type data
for an element. Anything less than 0 which is entered as the
<configuration> will be treated as 0, and anything greater than 2
will be treated as 2.

Individual data elements may be omitted, but these omitted
elements will all be treated as 0. For example, the two
statements below mean the same thing:

MOVES POINT (100, 100, 0, 0, 0, 0)

When entering positional data from the teach pendant, data for
the work coordinate system in effect at the time will also be
recorded. When a movement command is executed, the
current work coordinate system will change over to that in effect
at the time the positional data was taught. Note, however, that
base and tool coordinates will stay as they were before the
command was executed.

When directly specifying the <position> values, (sometimes
along with creating or manipulating positional data with
commands such as DEST, HERE and POINT), movements are
performed with the work coordinate system in effect before the
command was executed.

 STE 80721
– 3-142 –

 ROBOT LANGUAGE MANUALseries Robot Controller

The controller will figure out movement conditions such as speed
and acceleration with the system variable values in effect at the
time. Should you wish to change a movement condition for one
operation, use the WITH command to specify that condition.
Refer to the WITH command for more information.

[About the 5th axis addition (the option)]
When adding (the option) the 5th axis, be careful because it
isn't possible for a straight line interpolation to be worked about
the 5th axis. Among the other axes, a straight line interpolation is
worked.

Sample
program

PROGRAM MOVESSAMPL
MOVES A1
MOVES A2

END

This program will move the robot to point A2 with linear motion.

 STE 80721
– 3-143 –

 ROBOT LANGUAGE MANUALseries Robot Controller

MOVESYNC

Purpose Specifies the motion command synchronous mode or motion
command asynchronous mode.

Format
MOVESYNC

DISABLE MOVESYNC

Examples

Assume a motion during ENABLE NOWAIT in the SCOL
program where multiple motion commands and signal
input/output commands line up alternately. In the ENABLE
MOVESYNC status (motion command synchronous mode), the
system executes up to just before the next motion command and
waits for the completion of positioning. Therefore, the second
signal input/output is executed immediately after the second
motion command starts and the third signal input/output
command immediately after the third motion command starts.
In this mode, however, the system does not get into the state of
the system variable PASS, and short-cut motion cannot be
executed. In the DISABLE MOVESYNC state (motion
command asynchronous mode), the system pre-executes up to
just before the maximum four motion commands ahead and
waits for the completion of positioning. Therefore, the second
and subsequent signal input/output commands may be executed
during the first motion By enabling the system variable PASS,
pass motion becomes possible. The value of this system
variable when the SCOL program is actuated, is set by the user
parameter [U03].

Analysis
and

advice

 STE 80721
– 3-144 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Sample
program

PROGRAM MAIN
ENABLE NOWAIT
ENABLE MOVESYNC
MOVEA 1, 90
DOUT (1)
MOVEA 1, – 90
DOUT (2)
DISABLE MOVESYNC
MOVEA 2, 90
DOUT (3)
MOVEA 2, –90
DOUT (4)

END

D1 turns on while axis 1 is
moving to +90° position.
D2 turns on while axis 1 is
moving to –90° position.

D3 turns on while axis 2 is
moving to +90° position.
D4 turns on while axis 2 is
moving to +90° position (not
– 90° position).

 STE 80721
– 3-145 –

 ROBOT LANGUAGE MANUALseries Robot Controller

NEXT

Purpose NEXT is used in combination with the FOR statement to direct a
section of the program to repeat itself for a specified number of
times.

Format

Examples

Analysis
and

advice

NEXT [<variable>]

NEXT K

The NEXT statement is used with the FOR statement to direct a
part of the program to repeat itself.
The part of the program to be repeated is contained in a block
starting with the FOR command and ending with the NEXT
command. The block will keep on repeating itself until the
condition specified by the FOR statement is satisfied.

Specify the variable specified by the corresponding FOR
statement for <variable>.

If you do not specify <variable> in the NEXT statement, a loop is
made between the nearest FOR statement (executed finally) and
the NEXT statement.

For the repeat conditions of the program, see the FOR
command.

 STE 80721
– 3-146 –

 ROBOT LANGUAGE MANUALseries Robot Controller

PROGRAM NEXTSAMPLE

Sample
program FOR K = 1 TO 100

MOVE A1
MOVE A2

NEXT K
END

The robot will repeat 100 times a shuttle operation between A1
and A2.

 STE 80721
– 3-147 –

 ROBOT LANGUAGE MANUALseries Robot Controller

NOT

Purpose NOT reverses the judgment of a logical expression.

Format

Examples

Analysis
and

advice

NOT <logical expression>

IF NOT DIN (1) THEN STOP

NOT reverses the judgment of a logical expression.
The NOT statement must be used in an expression.

Sample
program

PROGRAM NOTSAMPLE
IF NOT DIN (1) THEN DOUT(1)

END

If input signal 1 is OFF, output signal 1 is ON.

 STE 80721
– 3-148 –

 ROBOT LANGUAGE MANUALseries Robot Controller

NOWAIT

Purpose NOWAIT is a system switch which directs the controller to
continue processing I/O signals without waiting for the robot to
finish positioning itself.

Format

Examples

Analysis
and

advice

NOWAIT

DISABLE NOWAIT
ENABLE NOWAIT

NOWAIT is a system constant used to tell the controller not to
wait for the robot to finish positioning itself before processing I/O
(input/output) signals.

Signal output timing is described in detail in Section 5.

The ENABLE and DISABLE commands are used to turn system
switches (such as NOWAIT) on and off.

ENABLE NOWAIT tells the controller not to wait for the robot to
finish positioning itself before sending out (or taking in) signals.
DISABLE NOWAIT tells the controller to wait for the robot to
finish positioning itself before sending out (or taking in) signals.

The initial setting for the system is DISABLE NOWAIT.

Sample
program

PROGRAM NOWAITSMPL
ENABLE NOWAIT
MOVE A1
DOUT (1)
MOVE A2
DOUT (2)
MOVE A3

END

Here, the controller will send out external signals without waiting
for the robot to finish positioning itself.

 STE 80721
– 3-149 –

 ROBOT LANGUAGE MANUALseries Robot Controller

OFF

Purpose OFF is a system constant used to specify axes for which the gain
(servo control) is to be OFF.

OFF

Format

Examples

Analysis
and

advice

GAIN = {OFF, OFF, ON, OFF, OFF}
MOVE A1 WITH GAIN = {,, OFF}

OFF is a system constant used in conjunction with GAIN or
SETGAIN in order to specify the gain (servo control) of a specific
axis as off.
Should the GAIN be specified as OFF, servo control for that axis
will stop the next time a movement command is executed.
Axes for which servo control has been stopped are in the "servo
free state" (in which positioning control is not carried out).
As a system constant, OFF has a value of 0. If you wanted to,
you could use it in your program as a constant having the value
0. However, this is not unnecessarily hard to understand.
You cannot substitute into system constants.
For information on gains, refer to the GAIN command.

 STE 80721
– 3-150 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Sample
program PROGRAM OFFSAMPLE

MOVE A1
WAIT MOTION > = 100
GAIN = {OFF, OFF, ON, OFF, OFF}
MOVE A2
OPEN 1
DELAY 0.5
MOVE A1
WAIT MOTION >= 100
GAIN = {ON, ON, ON, ON, ON}
READY

END

This program turns off all gains except that for the Z-axis (Axis 3)
before the robot moves to point A2.

 STE 80721
– 3-151 –

 ROBOT LANGUAGE MANUALseries Robot Controller

ON

ON is a system constant used to specify axes for which the gain
(servo control) is to be ON.

Purpose

Format

Examples

Analysis
and

advice

ON

GAIN = {OFF, OFF, ON, OFF, OFF}
MOVE A1 WITH GAIN = {,, ON}

ON is a system constant used in conjunction with GAIN or
SETGAIN in order to specify the gain (servo control) of a specific
axis as ON.
Should the GAIN be specified as ON, servo control for that axis
will start the next time a movement command is executed.
Axes for which servo control has been stopped are in the "servo
free state" (in which positioning control is not carried out).
As a system constant, ON has a value of 1. If you wanted to,
you could use it in your program as a constant having the value
1. However, this is not a good idea since it makes your
program unnecessarily hard to understand.
You cannot substitute into system constants.
For information on gains, refer to the GAIN command.

 STE 80721
– 3-152 –

 ROBOT LANGUAGE MANUALseries Robot Controller

PROGRAM ONSAMPLE Sample

program MOVE A1
WAIT MOTION >= 100
GAIN = {OFF, OFF, ON, OFF, OFF}
MOVE A2
OPEN 1
DELAY 0.5
MOVE A1
WAIT MOTION >= 100
GAIN = {ON, ON, ON, ON, ON}
READY

END

Before moving to point A2, this program turns off all gains except
that for the Z-axis (Axis 3). Then, when all motions have been
completed, the program will turn the gains back on for all axes.

 STE 80721
– 3-153 –

 ROBOT LANGUAGE MANUALseries Robot Controller

ON

ON is used for monitoring conditions. (For the gain ON/OFF
designation, see the descriptions on [ON] above.)

Purpose

ON <monitoring condition> [{BREAK | PAUSE}] DO <statement>

Format

Examples

Analysis
and

advice

ON DIN (1) DO RETURN
ON TIMER DO MOVE A1

Should the <monitoring condition> be satisfied, the statement
following the DO command will be executed.

Condition monitoring is carried out no matter what movement the
robot happens to be doing at the time.

The ON command is processed in parallel with robot motion
commands. Should a MOTION, MOTIONT, REMAIN or
REMAINT command be used as the monitoring condition,
monitoring of conditions for subsequent movement commands
will be performed. Should TIMER be used as the monitoring
condition, conditions will be monitored independently of robot
movement.

When monitoring input signals with DIN or other such
commands, the timing with which monitoring begins will vary
depending on the setting of the NOWAIT system switch. When
an ENABLE NOWAIT statement is in effect, signals will be
monitored independently of robot movement.

When the DISABLE NOWAIT statement is in effect, monitoring of
the signal will start after the robot has completed the movement it
was executing at the time.

 STE 80721
– 3-154 –

 ROBOT LANGUAGE MANUALseries Robot Controller

The execution of the statement following the DO command will
start immediately after the execution of the command in effect
when the monitoring condition was satisfied. However, if you
happen to be executing a WAIT command at the time the
monitoring condition was satisfied, the WAIT command will be
cancelled immediately and program control will shift to the
statement following the DO command.

There are three types of execution timing you can specify for the
robot while in operation:

BREAK : BREAK will immediately stop all robot movement and
shift control to the statement following the DO
command.

PAUSE: The statement following the DO command is
executed after the movement now in progress
finishes. During arm movement, however, normal
program execution continues, except for the
subprogram call command, return command to main
program and motion command. At execution of
these commands, program execution stops until the
arm has stopped.

Default: The default setting will cause the movement in
progress to be completed while simultaneously
executing statements following the DO command.
When the statement following the DO command is a
movement command, always include a BREAK or
PAUSE statement in the ON command line.

If the statement following the DO command (i.e., DO statement)
and the motion command in the DO statement were executed,
after the arm movement has finished, program execution will
restart in accordance with conditions just before the condition for
the ON command was satisfied.

 STE 80721
– 3-155 –

 ROBOT LANGUAGE MANUALseries Robot Controller

(Should a WAIT command have been interrupted, program
execution will restart from the beginning of that WAIT command,
i.e., the WAIT command will be executed again). However,
should a program branch to a label have been carried out with
the statement following the DO command, execution will start
from the statement having that label.

Ten sets of conditions can be monitored at once. Furthermore,
a maximum of four input signals may be specified with a single
ON command.

When multiple monitoring conditions become true at once, the
DO statement corresponding to the ON command having the
highest priority is executed. This priority is determined by the
order in which the ON commands were encountered in the
program, with the first ON command encountered having the
highest priority. DO statements corresponding to all other ON
commands are ignored.

Monitoring of a condition specified by an ON command will be
cancelled should execution shift to a DO statement
corresponding to another ON command. Also, conditions are
not monitored while program execution is halted due to a STOP
command or an error.

When a subprogram is specified with a statement following DO,
two or more processes described in the subprogram can be
executed when the condition is satisfied. When an ON
statement is used in the executing program as a statement
following DO, the monitoring of the condition becomes valid just
after the subprogram is returned.

When the system timer is specified as the monitoring condition,
the condition is checked only when the state of the timer
changes.

When monitoring an external signal, an error condition or a
movement reference command (such as the amount of a motion
remaining to be performed), the controller monitors the state, not
the change, of that signal.

 STE 80721
– 3-156 –

 ROBOT LANGUAGE MANUALseries Robot Controller

The IGNORE command will cancel the monitoring of conditions
specified by an ON command. Monitoring of conditions will also
stop when a condition is satisfied and a statement following a
DO command is executed.

Note 1: At present, ON and DO command combinations may
only be used in the ways shown below:

• ON TIMER DO <statement>
When the timer becomes 0, execute the statement.

• ON DIN () DO <statement>
When the state of the input signal(s) in the brackets ()
becomes as specified, execute the statement. You cannot
monitor more than four signals at once with one such
statement. When four or more points are specified, the extra
points exceeding four points are ignored.

• ON MOTION > = <expression> DO <statement>
Execute the statement when the amount of a motion which is
to be executed next to this command exceeds the specified
value. The only relational operand you can use with
MOTION is >=.

• ON MOTIONT > = <expression> DO <statement>
Execute the statement when the time required for a motion
which is to be executed next to this command exceeds the
specified time. The only relational operand you can use with
MOTIONT is > =.

• ON REMAIN < = <expression> DO <statement>
Execute the statement when the remaining amount of a
motion which is to be executed next to this command is
smaller than the specified value. The only relational operand
you can use with REMAIN is < =.

 STE 80721
– 3-157 –

 ROBOT LANGUAGE MANUALseries Robot Controller

• ON REMAINT <= <expression> DO <statement>
Execute the statement when the remaining time required for a
motion which is to be executed next to this command is
smaller than the specified time.
The only relational operand you can use with REMAINT is <
=.

Note 2: The following command relating to the task control
cannot be used in the area following the DO statement.
TASK, KILL, SWITCH

When using these commands after the DO statement,
they are not executed. Note that monitoring of the
conditions specified by the subtask ON command
cannot be executed.

Note 3: If a motion monitored under the condition of ON
MOTION, ON MOTIONT, ON REMAIN or ON
REMAINT has been stopped, or if the slow speed
command has been specified during execution of a
monitored motion, the ON condition is cancelled.

PROGRAM MAIN Sample

program DOSAMPLE
MOVE P

END
PROGRAM ONSAMPLE

ON DIN (1) PAUSE DO RETURN
MOVE A1
MOVE A2
MOVE A3
WAIT MOTION > = 100
IGNORE DIN (1)
RETURN

END

Should Signal 1 turn ON while a movement is being executed,
control will be returned to the main program after that movement
has been completed.

 STE 80721
– 3-158 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Cautions on DO statement:

For ON ~ DO command, the ON conditions to be monitored and
the DO statement which starts when the conditions are satisfied
are registered.

PROGRAM MAIN
SIG = 1
ON DIN (1) DO INPUT SIG
SUB
IGNORE DIN(1)
PRINT SIG

END
PROGRAM SUB

MOVE P
WAIT MOTION >= 100

END

In the above SCOL program, if DIN(1) is set ON during traverse
to P, the DO statement cannot be executed because the variable
SIG is not defined in the program SUB and there is no space for
saving the variable as input by the INPUT command. In this
case, the relevant DO statement can be executed normally by
defining the variable SIG as the global variable.

GLOBAL
SIG = 0

END
PROGRAM MAIN

SIG = 1
ON DIN(1) DO INPUT SIG
SUB
IGNORE DIN(1)
PRINT SIG

END
PROGRAM SUB

MOVE P
WAIT MOTION >= 100

END

 STE 80721
– 3-159 –

 ROBOT LANGUAGE MANUALseries Robot Controller

In the DO statement, even if the task changeover conditions are
established or the SWITCH command is executed, the task
cannot be changed over. If the TASK command or KILL
command is executed, an error occurs.

 STE 80721
– 3-160 –

 ROBOT LANGUAGE MANUALseries Robot Controller

ONGAIN

Purpose Turns on the gain of each axis (servo control).

Format ONGAIN (<integer>, <integer>, <integer>, <integer>, <integer>)

Examples ONGAIN (0, 0, 1, 0, 0)

The gain of each axis (servo control) of the robot is turned on. Analysis

and
advice

For details of the gain, see the descriptions of the GAIN
command.

To turn off the gain, use the OFFGAIN command. For each
joint of axes 1 to 5, specify the gains by delimiting the values of
the five axes with a comma. The values are specified with 1 or
0. When 1 is specified, the gain of the axis is turned on.
When 0 is specified, the state of the axis remains unchanged.

The on/off state of the gain is changed after the current motion is
completed.

This command can be executed only when file SCOL.LIB is
present in the RAM drive of the controller.

In this command, the system constants ON and OFF cannot be
used.

 STE 80721
– 3-161 –

 ROBOT LANGUAGE MANUALseries Robot Controller

PROGRAM ONGAINSMPL Sample

program MOVE A1
OFFGAIN (1,1,0,1,1)
MOVE A2
ONGAIN (1,1,1,1,1)
MOVE A3

END

After the robot is moved to A1, except for the axis 3, the gains
are turned off. After the robot is moved to A2, the gains of all
the axes are turned on.

 STE 80721
– 3-162 –

 ROBOT LANGUAGE MANUALseries Robot Controller

OFFGAIN

Purpose Turns off the gain of each axis (servo control).

OFFGAIN (<integer>, <integer>, <integer> ,<integer>, <integer>)

Format

OFFGAIN (1, 1, 0, 1, 1)

Examples

The gain of each axis (servo control) of the robot is turned off. Analysis

and
advice

For details of the gain, see the descriptions of the GAIN
command.

To turn on the gain, use the ONGAIN command. For each joint
of axes 1 to 5, specify the gains by delimiting the values of the
five axes with a comma. The values are specified with 1 or 0.
When 1 is specified, the gain of the axis is turned off. When 0
is specified, the state of the axis remains unchanged.

The on/off state of the gain is changed after the current motion is
completed.

This command can be executed only when file SCOL.LIB is
present in the RAM drive of the controller.

In this command, the system constants ON and OFF cannot be
used.

 STE 80721
– 3-163 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Sample
program

PROGRAM OFFGAINSMPL
MOVE A1
OFFGAIN (1,1,0,1,1)
MOVE A2
ONGAIN (1,1,1,1,1)
MOVE A3

END

After the robot is moved to A1, except for the axis 3, the gains
are turned off. After the robot is moved to A2, the gains of all
the axes are turned on.

 STE 80721
– 3-164 –

 ROBOT LANGUAGE MANUALseries Robot Controller

OPEN1, OPEN2, OPENI1, OPENI2

Purpose These commands open the robot hand.

Format

Examples

Analysis
and

advice

OPEN1
OPEN2
OPENI1
OPENI2

OPEN1
OPENI2

These commands are used to open the hand. The numbers 1
and 2 refer to Hand 1 and Hand 2.

These commands open the hand by changing the state of the
output signal which controls the robot hand.

The OPEN command directs the robot to open its hand after it
completes the motion in progress.

The OPENI command directs the robot to open its hand
immediately.

Note that these commands will not work if the file SCOL.LIB is
not in the controller RAM drive.

Also, keep in mind that there is a slight delay from when an
OPEN command is output until the robot actually opens its hand.

Corresponding commands CLOSE1, CLOSE2, CLOSEI1 and
CLOSEI2 are provided in order to close the hand.

These commands execute a program written in the system
library (SCOL. LIB). The data of SCOL. LIB should be changed
according to the robot hand specifications.

 STE 80721
– 3-165 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Sample
program

PROGRAM OPENSAMPLE
CLOSEI1
MOVE A1
OPEN1
DELAY 0.5
MOVE A2

END

This program opens the hand after the robot has finished moving
to point A1. The robot waits 0.5 seconds until the hand is open
completely after the OPEN1 command has been executed.

PROGRAM OPENISMPL
ENABLE NOWAIT
OPENI 1
DELAY 2
MOVE A1
CLOSEI 1
DELAY 2
MOVE A2

END

Here, the robot will open its hand1 while moving to point A1.

 STE 80721
– 3-166 –

 ROBOT LANGUAGE MANUALseries Robot Controller

OR

Purpose OR is used to find the logical sum of two logical expressions.

<logical expression> OR <logical expression>

Format

Examples IF DIN (1) OR K < = 3 THEN J = 0
WAIT DIN (5) OR TIMER==0

The OR statement calculates the logical sum of the expressions
to the right and left. If even one of the two statements is true,
OR will return a TRUE.

Analysis
and

advice

The OR statement must be used in an expression.

Sample
program

PROGRAM ORSAMPLE
FOR K=1 TO 50
IF DIN (1) OR K==50 THEN J=1 ELSE J=0
PRINT TP, J, CR
NEXT K

END

 STE 80721
– 3-167 –

 ROBOT LANGUAGE MANUALseries Robot Controller

OVERRIDE

Purpose

Format

Analysis
and

advice

Sample
program

Examples

This specifies the robot override.

OVERRIDE = <expression>

OVERRIDE = 50

This is a system variable that specifies the override for the robot
operating speed. OVERRIDE is specified as a positive integer
value. If a value of 0 or less is specified, it is treated as a value of
1. Also, if a value of more than 100 is specified, it is treated as
100%.
If the override (OVRD) is set by TP operation, a value exceeding
that setting value cannot be set for this variable. (If a larger value
is set, the command is ignored.)
Constants, variables, and calculations can be used in the
<expression> section. However, vector-type data cannot be
used.
The initial value for OVERRIDE is 100%.

PROGRAM SAMPLE
SPEED=100
MOVE A1
ON MOTION>=25 DO OVERRIDE=50
MOVE A2
WAIT MOTION>=100
OVERRIDE=100
ON MOTION>=50 DO OVERRIDE=50
MOVE A3
WAIT MOTION>=100
OVERRIDE=100
ON MOTION>=75 DO OVERRIDE=50
MOVE A1
WAIT MOTION>=100
MOVE A2
END

 STE 80721
– 3-168 –

 ROBOT LANGUAGE MANUALseries Robot Controller

PAI

Purpose PAI (normally written "~" or "pi ") is a system constant having a
value of 3.14159

Format PAI

R = D*PAI/180

Examples
D = N*PAI*2

PAI is a system constant having a value beginning with
3.14159.... You can use it to represent "pi" when calculating the
length of an arc, the area of a circle, etc.

Analysis
and

advice

You cannot substitute into system constants including PAI.

Sample
program

PROGRAM MAIN
PAISAMPLE (5, D)
PRINT TP, D, CR

END
PROGRAM PAISAMPLE (R, D)

D = R/PAI*180
RETURN

END

This subprogram converts the value of the argument from
radians to degrees, and sends the result back to the main
program as argument D.

 STE 80721
– 3-169 –

 ROBOT LANGUAGE MANUALseries Robot Controller

PASS

Purpose PASS is a system switch used to specify short-cut movement.
(For setting short-cut motion parameters, see the next page.)

PASS

Format

Examples
DISABLE PASS ENABLE PASS

Analysis
and

advice

PASS is a system switch used to invoke short-cut movement.

Short-cut movement is an operating mode in which the robot is
directed to begin its next move before completing the positioning
of its previous move. The timing for switching over from the
present movement to the next movement is specified with the
system variable PASS command. Short-cut movement allows
you to reduce the time it takes the robot to get from one place to
another. For more information, refer to Section 5.

The ENABLE and DISABLE commands are used to turn on and
off system switches such as PASS. An ENABLE PASS
statement will activate short-cut movement, and DISABLE PASS
will cancel short-cut movement.

The initial setting for the controller is DISABLE PASS.

 STE 80721
– 3-170 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Sample
program

PROGRAM PASSSAMPLE
MOVE A1
PASS = 80
ENABLE PASS
MOVE A2
MOVE A3
DISABLE PASS
MOVE A4
MOVE A5

END

This program moves the robot with short-cut movement from A1
to A4, and for the movement from point A4 onwards, cancels the
short-cut movement.

A1 A2 A3 A5A4

MOVE A1

 STE 80721
– 3-171 –

 ROBOT LANGUAGE MANUALseries Robot Controller

PASS

PASS is a system variable used to set short-cut movement
parameters. (For setting short-cut motion parameters, see the
previous page.)

Purpose

PASS = <expression>

Format

PASS = 80

Examples
PASS = PASS*0.8

PASS is a system variable used to specify parameters for
short-cut movement.

Analysis
and

advice
Short-cut movement is an operating mode in which the robot is
directed to begin its next move before completing the positioning
of its previous move. The timing for switching over from the
present movement to the next movement is specified with the
system variable PASS command. The parameter for short-cut
movement is expressed as a percentage of a motion completed
by a robot relative to the entire motion. When the robot
movement has exceeded that percentage, the motion being
performed at that time and the following motion are
superimposed.

The travel amount refer to a position that the robot is directed, at
which the next movement is started even if the actual robot
cannot move because of interference between the robot and the
controller.

An integer value of 50 to 100 may be specified for PASS.
Numbers less than 50 will be treated as 50%, and numbers
greater than 100 will be treated as 100%.

The <expression> designation may contain a constant, variable,
or calculation. However, you may not use vector-type data.

When referring to the PASS system variable, you can refer to the
parameter of the current short-cut movement.

 STE 80721
– 3-172 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Short-cut movement allows you to reduce the time it takes the
robot to get from one place to another. For more information, see
Section 5.

The ENABLE and DISABLE commands are used to turn on and
off system switches such as PASS. An ENABLE PASS statement
will activate short-cut movement, and DISABLE PASS statement
will cancel short-cut movement.

The initial setting for the controller is DISABLE PASS.

If the WAIT command and I/O command have been specified
while a movement command is executed before the PASS
movement stats the execution, the PASS movement may not be
executed.

PROGRAM PASSSAMPLE Sample

program MOVE A1
PASS = 80
ENABLE PASS
MOVE A2
MOVE A3
DISABLE PASS
MOVE A4
MOVE A5

END

This program moves the robot with short-cut movement from A1
to A4, and for the movement from point A4 onwards, cancels the
short-cut movement.

A1 A2 A3 A5A4

MOVE A1

 STE 80721
– 3-173 –

 ROBOT LANGUAGE MANUALseries Robot Controller

PAUSE

PAUSE is used to direct the controller to wait until the robot
finishes a motion.

Purpose

ON <monitoring condition> [{BREAK | PAUSE}] DO <statement>

Format

ON DIN (1) PAUSE DO SUB Examples

When the monitoring conditions specified by the ON statement
are established, the PAUSE directs the controller to wait until the
robot finishes the motion in progress before executing the DO
statement. For details, see the "ON" command.

Analysis
and

advice

PROGRAM PAUSESMPL Sample

program ENABLE NOWAIT
REMARK *** MAIN PROGRAM ***
ON DIN (24) PAUSE DO STOP
MOVE A1
MOVE A2
MOVE A3
WAIT MOTION >= 100
IGNORE DIN (24)

END

Here, if something goes wrong with the system and Input Signal
24 turns ON, the robot will stop moving after completing the
movement in progress at the time.

 STE 80721
– 3-174 –

 ROBOT LANGUAGE MANUALseries Robot Controller

PAYLOAD

PAYLOAD is a system variable used to set data for loads acting
on the end of the robot hand.

Purpose

PAYLOAD = {<mass>, <center of gravity offset>}

Format

PAYLOAD = {10, 10}

Examples MOVE A1 WITH PAYLOAD = MOTOR

PAYLOAD is a system variable used to set data for loads acting
on the end of the robot hand.

Analysis
and

advice
In order that the robot operate effectively under various loads,
the SCOL language makes it possible to set load data which
describes the mass and inertia acting on the end of the robot
hand.

Loads acting on the robot hand are set with the system variable
PAYLOAD. The controller uses these values to calculate
control constants for robot acceleration and deceleration that are
appropriate for the load.

Load data consists of values for the load mass and the load
moment of inertia.

The <mass> specification designates the weight of the load
applied to the tip of the robot hand in the order of kilograms.
The <center of gravity offset> designates the distance between
the center of gravity of the load applied to the tip of the robot
hand and the center of the tool of the hand in the unit of
millimeters.

Constants, variables and calculations may be used for the
<mass> and <center of gravity offset> designations. Also,
load-type data may be used for the {<mass>, <center of gravity
offset>} specification.

 STE 80721
– 3-175 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Load-type data is set as shown below:

Load-type data format:
<variable> = {<mass>, <center of gravity offset>}

Example: MOTOR = {5, 10}
 WORKA = HAND + MOTOR

The FREELOAD command is available to set load data to zero.

PROGRAM PAYLOAD

Sample
PAYLOAD = HAND program
MOVE A1
CLOSE1
DELAY 0.5
MOVE A2 WITH PAYLOAD = HAND + MOTOR
OPEN1
DELAY 0.5
MOVE A3
FREELOAD
MOVE A2
MOVE A3

END

HAND is assigned as the load data before the robot moves to
point A1. The robot grabs something at point A1, and the sum
of HAND + MOTOR is assigned as the new load data.

 STE 80721
– 3-176 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Load data is entered in term of:
Mass W [unit: kg]
Center of gravity offset L [unit: mm].

 STE 80721
– 3-177 –

 ROBOT LANGUAGE MANUALseries Robot Controller

POINT

POINT creates positional type data. Purpose

POINT (<expression>, <expression>, <expression>,
<expression>, <expression>, <configuration>)

Format

A = POINT (100, 100, 0, 0, 0, 0)

Examples
MOVE POINT (100, 100)

The POINT command creates positional type data. Analysis

and From left to right, the <expression> designations correspond to
the X, Y, Z, C and T elements. These elements are specified in
units of millimeters or degrees.

advice

The <configuration> element is to contain an integer from 0 to 2
that specifies robot configuration. The robot configuration is
undefined (free) at 0, left handed at 1 and right handed at 2. In
order to specify the system configuration, you may use these
numbers or the system constants FREE, LEFTY and RIGHTY.
As you would expect, the configuration is undefined at CONFIG
= FREE, left handed at CONFIG = LEFTY, and right handed at
CONFIG = RIGHTY. Anything less than 0 which is entered as
the <configuration> will be treated as 0, and anything greater
than 2 will be treated as 2.

Constant, variables or calculations may be used for the
<expression> and <configuration> terms. However, you may not
use vector-type data. Furthermore, any omitted <expression> or
<configuration> terms will be taken as 0.
This command must be used in an expression.

 STE 80721
– 3-178 –

 ROBOT LANGUAGE MANUALseries Robot Controller

PROGRAM POINTSMPL Sample
MOVE POINT (100, 100) program
END
This command will move the robot to the position X = 500, Y =
500, Z = 0, A = 0, B = 0, C = 0, and T = 0.

 STE 80721
– 3-179 –

 ROBOT LANGUAGE MANUALseries Robot Controller

PLCDATAR1~8 (Option of TS3000)

These are the system variables for receiving data from the
simple PLC built in the robot.

Purpose

PLCDATAR1

Format

A = PLCDATAR1

Examples
B = PLCDATAR5

PLCDATAR1 ~ 8 are the read-only system variables. Reading
of values set in the simple PLC is possible. (The simple PLC
function is an option.)
The value these system variables can receive are 0 ~ 65535.
(Neither a negative value nor a decimal point can be used.)

Analysis
and

advice

PROGRAM PLCDIN Sample
 A=PLCDATAR1 program
 B=PLCDATAR2
END

 STE 80721
– 3-180 –

 ROBOT LANGUAGE MANUALseries Robot Controller

PLCDATAW1~8 (Option of TS3000)

These are the system variables for writing data to the simple
PLC built in the robot.

Purpose

PLCDATAW1 = <expression>

Format

PLCDATAW1 = 1

Examples
PLCDATAW5 = A+B

Analysis PLCDATAW1 ~ 8 are the write-only system variables. Transfer
of values to the simple PLC is possible. (The simple PLC
function is an option.)
The value these system variables can transfer are 0 ~ 65535.
(Neither a negative value nor a decimal point can be used.)
The value written to PLCDATAW1 by the TS3000 controller is
shown on the 7-segment display (USER mode) on the controller
front panel.
(This cannot be shown on the TSL3000 controller because it
does not have a 7-segment display.)

and
advice

ON

LINE

USER

ALARM

SELECT

When the simple PLC function option is selected, values of
PLCDATAW1 ~ 8 can be used in the sequence program at the
user's discretion.

PROGRAM PLCDIN Sample
 A=10 program
 PLCDATAW1=1
 PLCDATAW2=A
END

 STE 80721
– 3-181 –

 ROBOT LANGUAGE MANUALseries Robot Controller

PRINT

The PRINT command outputs data to a specified
communications channel.

Purpose

PRINT [{COM0 | COM1 | TP},] {<character string> |
<expression>}[, {<character string> | <expression>}] ... [, CR]

Format

PRINT "X = ", A1. X

Examples
PRINT COM1, K, CR

The PRINT command is used to output data to a communication
channel.

Analysis
and

advice
Specify one (1) communication channel from COM0, COM1, and
TP. COM0 and TP are channels used solely for the teach
pendant. COM1 corresponds to controller COM1
communication channel.

If you do not specify a communication channel in your PRINT
statement, data will be output to the teach pendant
communication channel.

When a PRINT command is executed, the data will be output to
the specified communication channel.
Data contained in a <character string> will be output as it is.
Data included in an <expression> will be output in solid blocks
having a fixed length of 12 characters aligned on the right.
Should the expression have a real value, output will consist of a
real number having a maximum of four integer places and a
maximum of three decimal places for a maximum total of eight
spaces (counting the decimal point).

 STE 80721
– 3-182 –

 ROBOT LANGUAGE MANUALseries Robot Controller

A one character space is provided in front of the number for a
plus or minus sign, although the sign itself is omitted when it is +.
Numbers will be pushed over to the right in the 12 character
space, and any unused spaces will be left blank.

All data is in ASCII code. Should you write CR (Carriage
Return) at the end of the PRINT command, output from a
subsequent PRINT command will be displayed on the next line.

If you output data to the teach pendant, that data will be
displayed on the teach pendant.

For information of data communication, refer to the
Communication Manual.

After the moving arm has stopped, this command cannot be
executed.

PROGRAM PRINTSMPL Sample

program PRINT COM0, "*** INPUT N1, N2, N3 ***"
INPUT COM0, N1, N2, N3
PRINT (N1 + N2 + N3)/3, CR

END

This program will read in three values (N1, N2 and N3) from the
teach pendant, find the average, and display the average on the
teach pendant.

 STE 80721
– 3-183 –

 ROBOT LANGUAGE MANUALseries Robot Controller

PROGRAM

The word PROGRAM is used to mark the beginning of a
program.

Purpose

PROGRAM <program name> [(<variable name>, ...)]

Format

PROGRAM SAMPLE

Examples
PROGRAM MAIN

PROGRAM SUB1 (N1, N2, N3)

Analysis
PROGRAM is used to mark the beginning of a program. and

advice
The name of the program is designated by an identifier in the
<program name> specification.

The program text itself is sandwiched between a PROGRAM
statement and an END statement.

When designating a sub program, it is necessary to specify an
argument in parentheses when required.
For details of sub programs and arguments, see "2.8 Programs."

PROGRAM ENDSAMPLE Sample

program MOVE A1
MOVE A2
MOVE A3

END

Everything from the PROGRAM statement to the END statement
will be executed as a single program.

 STE 80721
– 3-184 –

 ROBOT LANGUAGE MANUALseries Robot Controller

PULOUT

The PULOUT command directs the controller to output an
external signal as a pulse.

Purpose

PULOUT (<signal name> [, <signal name>)...)

Format

PULOUT (1, 2, –3)

Examples
PULOUT (J, J+1, J+2)

The PULOUT command directs an output signal to be sent out
as pulses having a width of 0.2 seconds.

Analysis
and

advice
<signal name> is to contain the number of the signal to be
output. If the sign of <signal name> is positive, the signal will
be modulated as OFF ~ ON ~ OFF. If the sign of <signal
name> is negative, the signal will be modulated as ON ~ OFF ~
ON. Should the signal be ON and the sign of the <signal
name> be positive, the signal will not be modulated. Likewise,
should the signal be OFF and sign of the <signal name> be
negative, the signal will not be modulated.

Up to ten <signal name> designations can be made with one
PULOUT command.

You may use constants, variables or calculations for the <signal
name>. However, you may not use vector-type data.

By using an ENABLE NOWAIT statement, it is possible to output
pulse signals in parallel with (at the same time as) such
operations as robot movement and processing of other,
non-pulse output signals.

Should a DISABLE NOWAIT statement be in effect, processing
of any commands which follow a PULOUT command will not
begin until the pulse signal is completely output.

 STE 80721
– 3-185 –

 ROBOT LANGUAGE MANUALseries Robot Controller

When the same signal is output consecutively after the execution
of the PULOUT command while an ENABLE NOWAIT statement
is in effect, the pulse output is not guaranteed.

PROGRAM PULOUTSMPL Sample

DISABLE NOWAIT program
FOR K = 1 TO 16
PULOUT (K)
NEXT K

END

Output Signals 1 to 16 will turn ON one after the other at an
interval of 0.2 seconds.

 STE 80721
– 3-186 –

 ROBOT LANGUAGE MANUALseries Robot Controller

RCYCLE

RCYCLE is a label used for cycle resetting.

Purpose

RCYCLE

Format

RCYCLE

Examples

The RCYCLE label is used to start the execution of the main
program from the first step only on the first cycle and from the
step with the RCYCLE label on the second cycle and the
subsequent cycles. You can program the command you wish to
execute only once between the first step and the step with the
RCYCLE label, for example, initialization of the counter
increasing per cycle.

Analysis
and

advice

By doing this, you can continue to pick up a workpiece from the
pallet (depalletize) even if the robot has stopped during picking
operation.

When using the RCYCLE command, be sure to observe the
following cautions.

You can only use RCYCLE once in the main program.

Be sure to program so that at least one (1) line describing
“RCYCLE :” is executed. This function cannot be used for the
multitask program. An error occurs at cycle reset.
For the ON ~ DO command, this function cannot be used during
execution of the DO statement. An error occurs at cycle reset.
For more information on cycle resetting, refer to the Operator’s
Manual.

 STE 80721
– 3-187 –

 ROBOT LANGUAGE MANUALseries Robot Controller

PROGRAM RCYCLESMPL Sample

COUNT = 0 program

RCYCLE:
MOVE A1
MOVE A2
COUNT = COUNT + 1
IF COUNT < = 10 THEN GOTO RCYCLE

END

Here, even should execution be interrupted partway through,
operation can be continued where left off since the value of
counter COUNT is preserved.

 STE 80721
– 3-188 –

 ROBOT LANGUAGE MANUALseries Robot Controller

READY

The READY command returns the robot to its mechanical origin.

Purpose

READY

Format

READY

Examples

The READY command moves each axis of the robot to its
mechanical origin.

Analysis
and

advice
Note that this command will not work if you do not have the file
SCOL.LIB in the controller RAM drive.

In the horizontal rotating type robot, the axes are moved in the
order of axis 3, axis 4, axis 2, axis 1, and axis 5. Note that the
machine zero point of axis 3 is near the lower motion limit.

PROGRAM READYSMPL Sample

READY program
END

This program will return the robot to its mechanical origin.

 STE 80721
– 3-189 –

 ROBOT LANGUAGE MANUALseries Robot Controller

REAL

The REAL command changes a numerical value into a real
number.

Purpose

REAL (<expression>)

Format

AK = REAL (–20)

Examples
N = REAL (K)
J1 = K – REAL (N – 28)

The REAL command converts the number or calculation result in
the brackets () to a real number.

Analysis
and

advice
This command is used when one wants to specify the data type
of a variable as real (as opposed to integer).

You may use constants, variables or equations for <expression>.
However, you may not use vector-type data.

The REAL command must be used in an expression.

PROGRAM REALSAMPL Sample

K=REAL (0.12345) program
PRINT TP, K, CR

END

This program declares the data type of variable K as real.

 STE 80721
– 3-190 –

 ROBOT LANGUAGE MANUALseries Robot Controller

REMAIN

The REMAIN statement is used to refer to the amount of a
motion remaining to be completed.

Purpose

REMAIN

Format

K = REMAIN

Examples
ON REMAIN < = 50 DO DOUT (1)

The REMAIN statement can be used to see what percentage of
a robot motion remains to be completed.

Analysis
and

advice
The "amount of motion remaining" is defined as the percentage
of a motion not yet completed by the robot with respect to the
total distance to be covered by that motion. Calculations for
the amount of motion remaining are carried out for the axis that
has the greatest distance to travel. REMAIN returns a real
number.
By combining the REMAIN statement with an ON command, the
robot can be made to send out signals while a motion is still in
progress.

This statement must be used in an expression.

Note: The amount of motion referenced with the REMAIN command is the

position commanded to the robot. Note that the current position of
the robot has a delay to the commanded position while the robot is
moving.
Be careful because == can't be used for the comparative operator

 STE 80721
– 3-191 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Because the path orbit formation wait to P2 has occurred from P1, the
following example becomes an infinite loop. By replacing with the WAIT
sentence, it is possible to avoid an infinite loop.

ENABLE PASS

PASS=50
MOVE P1 →

LOOP1:
IF REMAIN > 5 THEN GOTO LOOP1
MOVE P2

ENABLE PASS
PASS=50
MOVE P1

WAIT REMAIN < 5
MOVE P2

PROGRAM REMAINSMPL
Sample

ENABLE NOWAIT program
ON REMAIN < = 50 DO DOUT (1)
MOVE A1
ON REMAIN < = 20 DO DOUT (2)
MOVE A2

END

When the robot hand is 50% of the way to point A1, Signal 1 will
be output. When the robot hand is 80% of the way to point A2
(or, in other words, when 20% of the motion remains to be
completed), Signal 2 will be output.

 STE 80721
– 3-192 –

 ROBOT LANGUAGE MANUALseries Robot Controller

REMAINT

The REMAINT statement is used to refer to the amount of time
remaining before a motion is to be completed.

Purpose

REMAINT

Format

K = REMAINT

Examples ON REMAINT < = 1 DO DOUT (1)

The REMAINT statement can be used to see how much time
remains before a certain motion will be completed.

Analysis
and

advice
Remaining time is given as a real number in units of seconds.
The remaining time will become 0 when the robot has completed
final positioning for that movement.

By combining the REMAINT statement with an ON command,
the robot can be made to send out signals while a motion is still
in progress. This statement must be used in an expression.

Be careful because == can't be used for the comparative
operator.

Because the path orbit formation wait to P2 has occurred from P1, the
following example becomes an infinite loop. By replacing with the WAIT
sentence, it is possible to avoid an infinite loop.

ENABLE PASS

PASS=50
MOVE P1 →

LOOP1:
IF REMAINT > 1 THEN GOTO LOOP1
MOVE P2

ENABLE PASS
PASS=50
MOVE P1

WAIT REMAINT < 1
MOVE P2

 STE 80721
– 3-193 –

 ROBOT LANGUAGE MANUALseries Robot Controller

PROGRAM REMAINTSMPL

Sample
ENABLE NOWAIT program
ON REMAINT < = 1 DO DOUT (1)
MOVE A1
MOVE A2

END

Signal 1 will be output one second before the robot reaches point
A1.

 STE 80721
– 3-194 –

 ROBOT LANGUAGE MANUALseries Robot Controller

REMARK

The REMARK statement is used to mark comments.

Purpose

REMARK [<comment>]

Format

REMARK *** SCOL SAMPLE ***

Examples

Comments are used in the program to make it easier to read and
understand.

Analysis
and

advice
REMARK statements themselves are interpreted as comments.

The comments are not executed.
The symbol (') has the same meaning as the REMARK
statement. When writing a comment following other commands,
this symbol (') is used. The characters following the symbol (')
are all interpreted as comments.

PROGRAM REMARKSMPL Sample

REMARK *** SAMPLE PROGRAM *** program
MOVE A1 'MOVES TO A1

END

“MOVES TO A1” is programmed as the comment.

 STE 80721
– 3-195 –

 ROBOT LANGUAGE MANUALseries Robot Controller

RESET

The RESET command is used to reset certain controller
conditions such as the state of output signals.

Purpose

RESET <state> [, <state>]

Format

RESET DOUT

Examples
RESET RESUME

The RESET command is used to reset the state of such things
as the controller output signals. Only the following two
statements may be used.

Analysis
and

advice

(1) DOUT
DOUT will turn OFF all user output signals.

(2) RESUME
RESUME will reset the robot movement suspended by a
BREAK command in an ON construct. After resetting, the
movement interrupted by the BREAK command cannot be
resumed by the RESUME command.

PROGRAM RESETSMPL Sample

RESET DOUT program

END

This program will turn all user output signals OFF.

 STE 80721
– 3-196 –

 ROBOT LANGUAGE MANUALseries Robot Controller

RESTORE

This command updates the initial value of the global variable.

Purpose

RESTORE (“<variable>”)

Format

RESTORE (“I”)

Examples

Change, etc. of the position data which has been taught is
restored to the file. The variable which can be specified is only
the global variable other than the array which does not have an
initial value. If any other variable is to be restored, an error
occurs at selection.

Analysis
and

advice

GLOBAL Sample

A = 0 program
END

PROGRAM STORETEST
A = A + 1
RESTORE (“A”)
PRINT "A=", A, CR

END

 STE 80721
– 3-197 –

 ROBOT LANGUAGE MANUALseries Robot Controller

RESUME

The RESUME command restarts robot movement interrupted by
a BREAK command.

Purpose

RESUME

Format

RESUME

Examples

The RESUME command is used to restart robot motion
suspended by a BREAK command in an ON construct.

Analysis
and

advice
Movement is restarted (resumed) from the location the robot
movement was suspended. Therefore, should you restart in the
circular interpolation mode, the path the robot takes may vary by
quite a bit depending on the relation between the current
position, the interpolation points and the destination.

When multiple BREAK commands have been executed (and are
still in effect), only the movement interrupted by the last BREAK
command may be resumed.

Should you execute a RESET RESUME statement, the
suspended motion will be reset. The suspended motion will
also be reset should a PAUSE command be executed by the ON
command.

This command is effective only in the DO statement. If
executed in a statement other than the DO statement, this
command is ignored.

 STE 80721
– 3-198 –

 ROBOT LANGUAGE MANUALseries Robot Controller

PROGRAM RESUMESMPL Sample

ENABLE NOWAIT program
REMARK *** MAIN PROGRAM ***
ON DIN (24) BREAK DO BREAKSUB
MOVE A1
MOVE A2
MOVE A3
WAIT MOTION > = 100
IGNORE DIN (24)

END

Should something go wrong with the system and Input Signal 24
turn ON, the controller will stop robot movement immediately and
shift program execution to subprogram BREAKSUB (shown
below).

PROGRAM BREAKSUB
REMARK *** SUBROUTINE ***
WAIT DIN (–24)
RESUME

END

The subprogram BREAKSUB will wait until Input Signal 24 turns
OFF. When the error is resolved, the interrupted motion will be
resumed.

 STE 80721
– 3-199 –

 ROBOT LANGUAGE MANUALseries Robot Controller

RETURN

The RETURN statement directs program execution to return to
the main program from a subprogram.

Purpose

RETURN

Format

RETURN

Examples

The RETURN statement is used to return the program from the
subprogram to the main program.

Analysis
and

advice
Even should you forget to include a RETURN statement in your
subprogram, the controller will return the control to the main
program through the execution of the END statement.

You will get an error should you put a RETURN statement in your
main program.

PROGRAM MAIN Sample

program RETURNSAMPLE (5, K)
PRINT TP, K, CR

END
PROGRAM RETURNSMPL (N, K)

K = N * N
RETURN

END

This program will take argument N, multiply it by itself, and send
the result back to the main program as argument K.

 STE 80721
– 3-200 –

 ROBOT LANGUAGE MANUALseries Robot Controller

RIGHTY

RIGHTY is a system constant used to change over the
configuration of the robot to a right handed system.

Purpose

RIGHTY

Format

CONFIG = RIGHTY

Examples
MOVE A1 WITH CONFIG = RIGHTY

RIGHTY is used in conjunction with CONFIG in order to set the
robot configuration to a right handed system.

Analysis
and

advice
As a system constant, RIGHTY has the value of 2. If you
wanted to, you could use it in your program as a constant having
the value 2. However, this is not a good idea since it makes
your program unnecessarily complicated.

You cannot substitute into system constants including RIGHTY.

For Cartesian coordinate robots, designation of robot
configuration is ignored.

For information on robot configuration, see the CONFIG
command.

PROGRAM RIGHTYSMPL Sample

CONFIG = RIGHTY program
MOVE A1
MOVE A2

END

This program will set the robot configuration to a right handed
system before moving the robot on its way.

 STE 80721
– 3-201 –

 ROBOT LANGUAGE MANUALseries Robot Controller

SAVEEND

Specify the global variable preserved in the backup memory
when the robot stops.

Purpose

SAVEEND: Format

SAVEEND:

Examples

Analysis When the robot stops, the specified variable is saved in
the backup memory.

and
advice

Please define variables that should be saved between
“GLOBAL” and "SAVEEND:".

The saved data is restored after the controller is turned
on at the next time.

The variables can be saved up 10kByte.

The specified global variable is saved by the following

 stop conditions.

• Cycle STOP
• Feed-Hold
• BREAK
• Emergency STOP
• Servo OFF

Moreover, the saved data is cleared according to the
following operation timing.

• Program Select
• Program Reset
• When the main power source is turned off at

movement (in the “running” status).

 STE 80721
– 3-202 –

 ROBOT LANGUAGE MANUALseries Robot Controller

< Notice >
• It takes about 100msec/1kbyte to save data.

• Turn off the power supply after a second after the robot stops, if the saved data is

large.

• The system variables are also saved. (However, TIMER variables and TID
variables other than the main program are excluded.)

• About variable type that can be described in a global block, there is a limitation
explained by manual "Chapter of the language" and "2.8.5 global variable
definition". The variable that cannot be described in a global block by this limitation
cannot be saved by this function.

 GLOBAL
 I=0 “I” is saved when “STOP”.
 SAVEEND:
 J=0 “J” is not saved when “”STOP”.
 END

 PROGRAM MAIN
 FOR K=1 TO 10
 I=I+1
 J=J+1
 NEXT
 PRINT “I=", I, “J=", J, CR
 END

Sample
program

 STE 80721
– 3-203 –

 ROBOT LANGUAGE MANUALseries Robot Controller

1. Start program "MAIN" in the cycle operation mode.

2. "I=10,J=10" is displayed on the teach pendant.

3. Program stops at the “END” command.

 ⇒"I=10" is saved into the backup memory.

4. Turn off → on the controller power.

5. Start program "MAIN".

6. "I=20,J=10" is displayed on the teach pendant.

Processing flow of data restoration when power OFF - ON

 STE 80721
– 3-204 –

 ROBOT LANGUAGE MANUALseries Robot Controller

SAVEF1 ~ 4

This is a real number type system variable that can hold data
without clearing it when the main power is turned off.

SAVEF1 = <expression>
SAVEF2 = <expression>
SAVEF3 = <expression>
SAVEF4 = <expression>

SAVEF = 1.0:
A = SAVEF1

• When the main power is turned off, the specified real

number type system variable is saved to the backup memory.
• The real number type variable can use the four memory slots of

SAVEF1 to SAVEF4.
• When the power is turned on the next time, the value that was

saved to the backup memory is restored.
• The value that can be handled as a real number type system

variable is a value with an absolute value in the range from
about 5.87 x 10(-39)(2-127) to 6.80x1038((223-1)x2106).

• The value of the real number type system variable is cleared
whenever the following operations are performed.

(1) Program select
(2) Program reset

PROGRAM SAVEFSAMPLE
FOR A=1 TO 100
PRINT “SAVEF1=”, SAVEF1,CR
DELAY 0.5
SAVEF1= SAVEF1+1.0
NEXT A
END

Purpose

Format

Examples

Analysis
and

advice

Sample
program

 STE 80721
– 3-205 –

 ROBOT LANGUAGE MANUALseries Robot Controller

SAVEI1 ~ 4

This is an integer type system variable that can hold data
without clearing it when the main power is turned off.

SAVEI1 = <expression>
SAVEI2 = <expression>
SAVEI3 = <expression>
SAVEI4 = <expression>

SAVEI1 = 1.0:
A = SAVEI1

• When the main power is turned off, the specified integer

type system variable is saved to the backup memory.
• The integer type variable can use the four memory slots of

SAVEI1 to SAVEI4.
• When the power is turned on the next time, the value that was

saved to the backup memory is restored.
• The value that can be handled as an integer type system

variable is a value in the range from -2147483648 to
+2147483647.

• The value of the integer type system variable is cleared
whenever the following operations are performed.

(1) Program select
(2) Program reset

PROGRAM SAVEISAMPLE
FOR A= SAVEI1 TO 100
PRINT ”A=”, A, CR
DELAY 0.5
SAVEI1 = A
NEXT A
END

Purpose

Format

Examples

Analysis
and

advice

Sample
program

 STE 80721
– 3-206 –

 ROBOT LANGUAGE MANUALseries Robot Controller

SEGMENT

SEGMENT is a system constant which is used to refer to the
system operating mode.

SEGMENT

IF MODE = = SEGMENT THEN RETURN

SEGMENT is used along with the MODE command to refer to
the system operation mode. When MODE = = SEGMENT, the
system is operating in the segment operation mode.

As a system constant, SEGMENT has a value of 2. If you
wanted to, you could use it in your program as a constant having
the value 2. However, don't do it since it will make your
program hard to understand.

You cannot substitute into system constants.

The monitor command MODE MOTION can be used to specify
segment operation.

For information on operating modes, see the MODE command.

PROGRAM MAIN

SEGMENTSAMPLE
END
PROGRAM SEGMENTSPL

IF MODE = = SEGMENT THEN RETURN
MOVE A1
MOVE A2
MOVE A3

END

If the mode is set to segment operation, program execution will
return to the main program without execution.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

 STE 80721
– 3-207 –

 ROBOT LANGUAGE MANUALseries Robot Controller

SETGAIN

The SETGAIN command is used to specify whether the gain (for
servo control) is to be ON or OFF for each axis.

SETGAIN (<integer>, <integer>, <integer>, <integer>, <integer>)

SETGAIN (0, 0, 1, 0, 0)

The SETGAIN command is used to specify whether the gain
(servo control) of each axis is to be ON or OFF.

The SETGAIN command will take effect upon the completion of
the robot motion being performed at the time.
For more information on gains, see the "GAIN" command.
The SETGAIN command will not work if you do not have the file
SCOL.LIB in the controller RAM drive. With this command, a
system constant cannot be turned on/off.

Two commands ONGAIN and OFFGAIN are provided in the
library file for turning on and off the gain. Use these two
commands when turning on and off the gain.

PROGRAM SETGAINSMPL

MOVE A1
SETGAIN (0, 0, 1, 0, 0)
MOVE A2
SETGAIN (1, 1, 1, 1, 1)
MOVE A3

END

This program turns off all gains except that the Axis 3 when the
robot reaches point A1. Program will then turn on all gains
when the reaches point A2.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

 STE 80721
– 3-208 –

 ROBOT LANGUAGE MANUALseries Robot Controller

SGN

The SGN function returns the sign of a number value.

SGN (<expression>)

S = SGN (–20.345)
N = ABS (K) * SGN (L)

The SGN function will return the sign of the <expression> in the
brackets.

SGN will return 1 if the <expression> is positive, –1 if negative,
and 0 if 0.

You may use constants, variables or equations for the
<expression> term. However, you may not use vector-type
data.

The SGN command must be used in an expression.

PROGRAM MAIN

SGNSAMPLE (5, 3, K)
PRINT TP, K, CR

END
PROGRAM SGNSAMPLE (K1, K2, K)

K = SGN (K1 – K2)
RETURN

END

This subprogram will take in two arguments K1 and K2 and, as
argument K, will return a 1 if K1 is bigger than K2, a 0 if the
same, and a –1 if smaller to the main program.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

 STE 80721
– 3-209 –

 ROBOT LANGUAGE MANUALseries Robot Controller

SIN

This function returns the sine of an entered value.

SIN (<expression>)

K = SIN (60)
J1 = 1 – SIN (180 – D)

This function returns the sine of the value in the brackets ().
Calculations are handled in units of degrees.

You may enter a constant, variable or calculation for the
<expression> term. However, you may not enter vector-type
data.

This command must be used in an equation.

PROGRAM MAIN

SINSAMPLE (2.0, 60.0, Y)
PRINT TP, Y, CR

END
PROGRAM SINSAMPLE (L, R, Y)

LOOP:
IF R > 180 THEN R = R – 360
IF R < –180 THEN R = R + 360
IF R > 180 OR R < –180 THEN GOTO LOOP
Y = L * SIN (R)
RETURN

END

Purpose

Format

Examples

Analysis
and

advice

Sample
program

 STE 80721
– 3-210 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Given (as arguments) a line segment with a length L and forming
an angle R with the X-axis, this program finds the length of the
Y-component of the line segment L and sends it back to the main
program as argument Y.

Y

X

L

R
L sin R

 STE 80721
– 3-211 –

 ROBOT LANGUAGE MANUALseries Robot Controller

SLOWDOWN

This specifies the slowdown operation.

SLOWDOWN

DISABLE SLOWDOWN
ENABLE SLOWDOWN

This specifies the slowdown operation.
In the slowdown operation, the speed can be changed
(decelerated) during movement of the current operation.
The ENABLE and DISABLE commands are used for turning the
system switch on and off. The operation commands after
ENABLE SLOWDOWN are used to change the speed during
movement based on the specified parameters.
The slowdown operation is canceled by DISABLE SLOWDOWN.
The initial setting is DISABLE SLOWDOWN.

PROGRAM SAMPLE

MOVE A1
SLOWDOWN=25
SLWSPD=50
ENABLE SLOWDOWN
MOVE A2
SLOWDOWN=50
MOVE A3
SLOWDOWN=75
MOVE A1
DISABLE SLOWDOWN
MOVE A2

END

Purpose

Format

Examples

Analysis
and

advice

Sample
program

 STE 80721
– 3-212 –

 ROBOT LANGUAGE MANUALseries Robot Controller

SLOWDOWN

This sets the parameters for the slowdown operation.

SLOWDOWN = <expression>

SLOWDOWN = 80

This is a system variable that specifies the parameters of the
slowdown operation.
In the slowdown operation, the speed can be changed
(decelerated) during movement of the current operation. The
timing that deceleration starts from the speed specified by the
SPEED variable is specified by the system variable
SLOWDOWN. The parameters of the slowdown operation are
specified as percentages of the movement amount of the robot
for the operation. If the movement amount exceeds the
percentage specified in the system variable SLOWDOWN,
deceleration to the speed specified by SLWSPD is started..

PROGRAM SAMPLE

MOVE A1
SLOWDOWN=25
SLWSPD=50
ENABLE SLOWDOWN
MOVE A2
SLOWDOWN=50
MOVE A3
SLOWDOWN=75
MOVE A1
DISABLE SLOWDOWN
MOVE A2

END

Purpose

Format

Examples

Analysis
and

advice

Sample
program

 STE 80721
– 3-213 –

 ROBOT LANGUAGE MANUALseries Robot Controller

SLWSPD

This specifies the slow speed for the slowdown operation.

SLOWDOWN = <expression>

SLOWDOWN = 20

This is a system variable for specifying the slow speed of the
slowdown operation as a percentage of the maximum speed.
SLWSPD is specified as a positive real number value. If a value
of 0 or less is specified, it is treated as a value of 1.
The speed cannot be raised by the slowdown operation.
Therefore, this variable is invalid when the specified value
exceeds the value that was set for the SPEED variable.
Constants, variables, and calculations can be used in the
<expression> section. However, vector-type data cannot be
used.
The initial value for SLWSPD is 100%.

PROGRAM SAMPLE
SLWSPD=50
SLOWDOWN=80
SLWSPD=30
MOVE A1
ENABLE PASS
ENABLE SLOWDOWN
MOVE A2
DISABLE PASS
DISABLE SLOWDOWN
MOVE A3
ENABLE SLOWDOWN
MOVE A4
DISABLE SLOWDOWN
END

Purpose

Format

Examples

Analysis
and

advice

Sample
program

 STE 80721
– 3-214 –

 ROBOT LANGUAGE MANUALseries Robot Controller

SMOOTH

This function designates a smooth motion.

(For the parameter setting of smooth motion, see the
descriptions below.)

SMOOTH

DISABLE SMOOTH
ENABLE SMOOTH

The smooth motion can be specified.
The motion command specified as SMOOTH allows the robot to
move to the target position without decelerating. With the
successive motion command, the robot starts moving without
accelerating, irrespective of presence or absence of SMOOTH.

To turn on and off the system switch, use the ENABLE and
DISABLE commands.

 With the ENABLE SMOOTH command, the smooth motion
starts.

 With the DISABLE SMOOTH command, the smooth motion is
cancelled.

The initial setting is DISABLE SMOOTH.

The smooth function is effective only for the interpolation
commands (MOVES, MOVEC).

During the ENABLE SMOOTH mode, COARSE is automatically
selected for the positioning accuracy.

If the speed at smooth connection has not reached the specified
speed for that motion command, the robot accelerates (or
decelerates) to the specified speed at maximum acceleration.

Purpose

Format

Examples

Analysis
and

advice

 STE 80721
– 3-215 –

 ROBOT LANGUAGE MANUALseries Robot Controller

If the smooth motion command is specified while the C-axis
travel distance of the smooth motion command is not enough,
compared with the X, Y and Z travel distances, an error occurs.

When the movement command including the travel of the T axis
is specified as SMOOTH, an error occurs.

If the DISABLE SMOOTH motion command does not have a
sufficient travel distance for deceleration and stop, speed control
at deceleration and stop cannot be guaranteed.
The PASS function cannot be used together with the SMOOTH
function. Also, the PASS motion cannot be connected with the
SMOOTH motion. (See the sample programs SMPL04 and
SMPL05.)

PROGRAM SMPL01

MOVE P01
ENABLE SMOOTH
MOVES P02
MOVEC P03 P04
MOVEC P05 P06
MOVES P07
DISABLE SMOOTH
MOVES P08

END

By connecting points P02, P04, P06 and P07 by smooth
motion, the robot decelerates and stops at point P08.

Sample
program

 MOVES MOVEC MOVEC MOVES MOVES
P1 P2 P3 P4 P5 P6 P7 P8

Programmed
speed

 STE 80721
– 3-216 –

 ROBOT LANGUAGE MANUALseries Robot Controller

(Bad example 1)

PROGRAM SMPL02
PASS=50
ENABLE SMOOTH
MOVES P01
MOVES P02
MOVES P03
ENABLE PASS ← An alarm is generated.

2–039 “PASS command prohibit”
MOVES P04
DISABLE SMOOTH
MOVES P05
MOVES P06
MOVES P07
DISABLE PASS
MOVES P08

END

If ENABLE PASS is specified in the ENABLE SMOOTH mode,
an alarm occurs and the robot stops moving.

(Bad example 2)

PROGRAM SMPL03
PASS=50
ENABLE PASS
MOVES P01
MOVES P02
MOVES P03
ENABLE SMOOTH ← An alarm is generated.

2–040 “SMOOTH command
prohibit”

MOVES P04
DISABLE PASS
MOVES P05
MOVES P06
MOVES P07
DISABLE SMOOTH

 STE 80721
– 3-217 –

 ROBOT LANGUAGE MANUALseries Robot Controller

MOVES P08
END

If ENABLE SMOOTH is specified in the ENABLE PASS mode,
an alarm occurs and the robot stops moving.

(Changeover from PASS to SMOOTH)

PROGRAM SMPL04
PASS=50
MOVE P01
ENABLE PASS
MOVES P02
MOVES P03
DISABLE PASS
ENABLE SMOOTH
MOVES P04
MOVES P05
DISABLE SMOOTH
MOVES P06

END

As the robot slows down and stops at the time of DISABLE
PASS, SMOOTH designation for point P04 becomes invalid.

That is, points P02 and P03 are connected by short-cut, point
P04 by deceleration and stop, and point P05 by smooth motion.
At point P06, the robot slows down and stops. When this
happens, alarm 1–018 of "Smooth connect invalid" is generated
at point P04.

Programmed
speed

P1 P2 P3 P4 P5 P6

 STE 80721
– 3-218 –

 ROBOT LANGUAGE MANUALseries Robot Controller

(Changeover from SMOOTH to PASS)

PROGRAM SMPL05
PASS=50
MOVE P01
ENABLE SMOOTH
MOVES P02
MOVES P03
DISABLE SMOOTH
ENABLE PASS
MOVES P04
MOVES P05
DISABLE PASS
MOVES P06

END

As the robot slows down and stops at the time of DISABLE
SMOOTH, PASS designation for point P04 becomes invalid.

That is, points P02 and P03 are connected by smooth motion,
point P4 by deceleration and stop, and point P05 by short-cut.
At point P06, the robot slows down and stops. When this
happens, alarm 1–017 of "Pass connect invalid" is generated at
point P4.

Caution: The machine service life may be affected by some
operating condition of this function. Before the use,
consult with us beforehand.

Programmed
speed

P1 P2 P3 P4 P5 P6

 STE 80721
– 3-219 –

 ROBOT LANGUAGE MANUALseries Robot Controller

SPEED

SPEED is a system variable used to specify the movement
speed of the robot.

SPEED = <expression>

SPEED = 50
MOVE A1 WITH SPEED = SPEED * 0.8

SPEED is a system variable which is used to specify the
movement speed of the robot. It is expressed in terms of
percent of the maximum speed (allowed by the controller).

SPEED is specified with a positive integer number. When a
numeric value of 0 or less is specified, the specification is treated
as 1. When a value of 100 or more is specified, the movement
speed is suppressed to the maximum speed designated in the
system.

You may use constants, variables or equations for the
<expression> term. However, you may not use vector-type
data.

By referring to this system variable, you can find the speed
setting in effect at the time.

The initial setting for SPEED is 100%.

Purpose

Format

Examples

Analysis
and

advice

 STE 80721
– 3-220 –

 ROBOT LANGUAGE MANUALseries Robot Controller

PROGRAM SPEEDSMPL

SPEED = 50
MOVE A1
MOVE A2
MOVE A3 WITH SPEED = 100
MOVE A4

END

Here, the robot will move to all points at 50% of full speed with
the exception of point A3, to which the robot will move at full
speed.

Sample
program

 STE 80721
– 3-221 –

 ROBOT LANGUAGE MANUALseries Robot Controller

SQRT

The SQRT function will return the square root of a given number.

SQRT (<expression>)
J1 = SQRT (L1 ^ 2 + L2 ^ 2)

K = SQRT (60)
J1 = 1 – SIN (180 – D)

The SQRT function will return the square root of the value in the
() brackets.

You may use constants, variables or equations for the
<expression> term. However, you may not use vector-type
data.

When the value of <expression> is negative, an error occurs and
take care.

This function must be used in an expression.

PROGRAM MAIN

SQRTSAMPLE (3, 5, L)
PRINT TP, L, CR

END
PROGRAM SQRTSAMPLE (X, Y, L)

L = SQRT (X ^ 2 + Y ^ 2)
RETURN

END

This subprogram takes in arguments X and Y (the lengths of the
two perpendicular sides of a right triangle), finds the length of the
hypotenuse of that triangle, and returns that length as argument
L to the main program.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

 STE 80721
– 3-222 –

 ROBOT LANGUAGE MANUALseries Robot Controller

STEP

STEP is used in combination with a FOR command to specify
how a loop is to repeat itself.

FOR <variable> = <expression 1> TO <expression 2> [STEP
<expression 3>]

FOR K = 1 TO 4 STEP 2
FOR N = K1 TO K1 + K2 STEP K3

The STEP statement is used in FOR ~ TO constructs to direct a
part of the program to repeat itself a specified number of times.

The part of the program to be repeated is contained in the block
starting with the FOR command and ending with the NEXT
command. The block will keep on repeating itself until the
condition specified by the FOR statement is satisfied.

When a FOR statement is executed, the value of <expression 1>
is substituted into the <variable>. When the NEXT statement is
executed, the value of <expression 3> specified by the STEP
statement is added on to the <variable>. Should the value of
the <variable> become greater than the value of <expression 2>
at this time, the execution of the program will shift to the
statement following the NEXT command. If <variable> is not
greater than <expression 2>, the program execution will branch
(go back) to the statement following the FOR statement.

The value of <expression 3> at the first loop is kept effective until
the last loop. Therefore, even should this value be changed
while executing the loop, the number of times the loop is
repeated will not change.

If the value of <expression 3> is 1, you may omit the STEP
statement (and everything after it) from the ON – DO construct.

Purpose

Format

Examples

Analysis
and

advice

 STE 80721
– 3-223 –

 ROBOT LANGUAGE MANUALseries Robot Controller

A constant, variable or calculation may be used for <expression
3>. However, you may not use vector- type data.

For more information on program "looping," see the FOR
command.

PROGRAM STEPSAMPLE

FOR K = 1 TO 100 STEP 2
MOVE A1 WITH SPEED K
MOVE A2

NEXT K
END

This program will move the robot fifty times back and forth
between points A1 and A2. On each trip, the robot will speed
up by 2%.

Sample
program

 STE 80721
– 3-224 –

 ROBOT LANGUAGE MANUALseries Robot Controller

STOP

The STOP command is used to stop execution of the program.

STOP

STOP

The program will stop executing when a STOP command is
encountered no matter what the system operating mode is at the
time.

There is no way to restart a program thus stopped. Instead, you
have to restart the program all over again.

When the program is restarted, the robot movement is restored
from the subsequent step.

PROGRAM STOPSAMPLE

ENABLE NOWAIT
ON DIN (10) DO STOP
MOVE A1
MOVE A2
MOVE A3

END

This program will stop executing itself should Input signal 10 turn
ON while the robot is moving.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

 STE 80721
– 3-225 –

 ROBOT LANGUAGE MANUALseries Robot Controller

SWITCH

This command compulsively changes over to other task in the
multitask operation.

SWITCH

SWITCH

If the single task is effective or the system variable “SWITCH” is
set to “DISABLE” and STEP command is effective, this
command is invalid.

GLOBAL

MAXTASK=2
END
PROGRAM MAIN

ID = 0
ID = TASK("SUB1")
LOOP:
IF DIN(1) THEN SWITCH
PRINT " TASK1 ",CR
GOTO LOOP

END
PROGRAM SUB1

ENABLE NOWAIT
LOOP1:
IF DIN(1) THEN SWITCH
PRINT " TASK2",CR
GOTO LOOP1

END

Purpose

Format

Examples

Analysis
and

advice

Sample
program

As the two (2) tasks use the
same I/O, if DIN(1) is OFF,
either task will occupy the I/O.
When DIN(1) is set ON, the
task is changed over
compulsively to prevent
one-sided occupation of I/O.

 STE 80721
– 3-226 –

 ROBOT LANGUAGE MANUALseries Robot Controller

SWITCH

This command prohibits or allows the task change-over.

SWITCH

ENABLE SWITCH
DISABLE SWITCH

While this system variable is changed to DISABLE, even if the
SWITCH command is executed or the task change-over
conditions predetermined in the system are satisfied, the task is
not changed over. The initial value of this system variable is
ENABLE.

GLOBAL
MAXTASK=2

END
PROGRAM MAIN
ID = 0
ID = TASK("SUB1")
LOOP:
IF DIN(1) THEN DISABLE SWITCH
ELSE ENABLE SWITCH
MOVEA 1,90
MOVEA 1,–90
GOTO LOOP

END
PROGRAM SUB1
ENABLE NOWAIT
DOUT (–1,–2)
TIMER=1
WAIT TIMER==0

Purpose

Format

Examples

Analysis
and

advice

Sample
program

At the start of the main
task loop, task
changeover ENABLE
or DISABLE is
selected by the input
of DIN (1).
If the task changeover
is disabled, the
subtask will not run
and DOUT remains
unchanged.

 STE 80721
– 3-227 –

 ROBOT LANGUAGE MANUALseries Robot Controller

DOUT (1)
TIMER=1
WAIT TIMER==0
DOUT (2)
TIMER=1
WAIT TIMER==0

END

 STE 80721
– 3-228 –

 ROBOT LANGUAGE MANUALseries Robot Controller

TAN

This function returns the tangent of the number entered.

TAN (<expression>)

K = TAN (60)
J1 = 1 – TAN (180 – D)

This function returns the tangent of the value in the brackets
().

Calculations are handled in units of degrees.

You may enter a constant, variable or calculation for the
<expression> term. However, you may not enter vector-type
data.

This function must be used in an equation.

PROGRAM MAIN

TANSAMPLE (2, 60, Y)
PRINT TP, Y, CR

END
PROGRAM TANSAMPLE (X, R, Y)

LOOP:
IF R > 180 THEN R = R – 360
IF R < – 180 THEN R = R + 360
IF R > 180 OR R < – 180 THEN GOTO LOOP
Y = X * TAN (R)
RETURN

END

Purpose

Format

Examples

Analysis
and

advice

Sample
program

 STE 80721
– 3-229 –

 ROBOT LANGUAGE MANUALseries Robot Controller

This program takes in the length of the X-component of the
segment and the angle R forms with the X-axis (as argument R).
The program then finds the length of the Y-component of the
segment, and returns the result as the argument Y to the main
program.

Y

X
R

X

X tan R

 STE 80721
– 3-230 –

 ROBOT LANGUAGE MANUALseries Robot Controller

TASK

This command executes the multitask.

TASK (“<program name>”)

ID = TASK (“SUB”)

A program parenthesized starts as the task.
The return value is the number characteristic of the started
subtask (task ID). The task ID is used as an argument at the
stop of task.

When using the I/O command in the subtask, declare ENABLE
NOWAIT in the subtask.

GLOBAL

ID=0
MAXTASK=2

END
PROGRAM MAIN

IF ID ==0 THEN ID= TASK (“SUB”)
LOOP:
MOVEA 1,90
MOVEA 1,–90

END
PROGRAM SUB

ENABLE NOWAIT
WAIT DIN (1)
DOUT (1)
WAIT DIN (–1)
DOUT (–1)

END

The subprogram starts as the task.
Asynchronous with the motion in the main task, the signal is
output in reply to the signal input.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

 STE 80721
– 3-231 –

 ROBOT LANGUAGE MANUALseries Robot Controller

THEN

The THEN statement is used in conjunction with an IF statement
for judging conditions.

IF <logical expression> THEN <statement> [ELSE <statement>]

IF DIN (1) THEN K = K + 1 ELSE K = 0

If the conditions of the <logical expression> following IF are
satisfied, the <statement> following THEN will be executed. If
the conditions are not satisfied, the statement following ELSE will
be executed.

An ELSE statement is not mandatory in an IF ~ THEN
construction. If the IF condition is not satisfied and there is no
ELSE statement, the command following the IF statement is
executed.

The <statement> following the THEN or ELSE statement may
not contain PROGRAM, END, IF, FOR, NEXT or WAIT.

For more information on condition judgments, see the IF
command.

PROGRAM THENSAMPLE

IF DIN (1) THEN K = 1 ELSE K = 0
MOVE A1
MOVE A2
MOVE A3
PRINT "K=", K, CR

END

Should Input Signal 1 be ON, K will equal 1.
Should Input Signal 1 be OFF, K will equal 0.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

 STE 80721
– 3-232 –

 ROBOT LANGUAGE MANUALseries Robot Controller

TID

This command refers to the task ID (number) of own task.

TID

MAINID = TID

This system variable is characteristic of each task started by the
TASK command.

Writing of this variable is not possible.

GLOBAL

MAXTASK=2
END
PROGRAM MAIN

TASK(“SUB”)
LOOP:
SWITCH
PRINT “MAINID=”, TID, CR
GOTO LOOP

END
PROGRAM SUB

ENABLE NOWAIT
SWITCH
PRINT “SUBID=”, TID, CR

END

TID is expressed in the main task and subtask. Both values
differ.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

 STE 80721
– 3-233 –

 ROBOT LANGUAGE MANUALseries Robot Controller

TIMER

The TIMER system variable is a timer that can be changed by
the system.

TIMER

TIMER = 20
WAIT TIMER = = 0

TIMER is a timer that can be used inside of SCOL programs.
The TIMER system variable can be set in units of seconds.
When a value of 0 or less is specified, the timer will not operate
correctly.

The value of the TIMER system variable counts down at the
same time as it has been set. When it reaches 0, counting down
cannot be executed any longer.

By referring to TIMER in your program, you can see how much
time is remaining at that time in your program.

PROGRAM TIMERSMPL

TIMER = 5
WAIT TIMER = = 0
PRINT TIMER, CR

END

PROGRAM TIMERSMPL2
FOR J = 1 TO 1000

PRINT "*", CR
TIMER = 1
WAIT TIMER = = 0

NEXT J
END

Purpose

Format

Examples

Analysis
and

advice

Sample
program The program waits until the set

value becomes 0 after it has
been set to 5 seconds.

This program will display one *
on the teach pendant every
second for 1000 seconds.

 STE 80721
– 3-234 –

 ROBOT LANGUAGE MANUALseries Robot Controller

TO

TO is used in combination with a FOR command to specify that a
portion of the program is to repeat itself a certain number of
times.

FOR <variable> = <expression 1> TO <expression 2>
[STEP<expression 3>]

FOR K = 1 TO 4
FOR N = K1 TO K1 + K2 STEP K3

The TO statement is used in FOR TO constructs to direct a part
of the program to repeat itself a specified number of times.

The part of the program to be repeated is contained in the block
starting with the FOR command and ending with the NEXT
command. The block will keep on repeating itself until the
condition specified by the FOR statement is satisfied.

When a FOR statement is executed, the value of <expression 1>
is substituted into the <variable>. When the NEXT statement is
executed, the value of <expression 3> specified by the STEP
statement is added on to the <variable>. Should the value of
the <variable> become greater than the value of <expression 2>
at this time, the execution of the program will shift to the
statement following the NEXT command. If <variable> is not
greater than <expression 2>, the program execution will branch
to the statement following the FOR statement.

The values of <expression 1>, <expression 2> and <expression
3> used in the FOR construct are those in effect when the FOR
statement was first executed. Therefore, even should these
values be changed while executing the loop, the number of times
the loop is repeated will not change.

Purpose

Format

Examples

Analysis
and

advice

 STE 80721
– 3-235 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Constants, variables and calculations may be used for
<expression 1> and <expression 2>. However, you may not
use vector-type data.

For more information on program "looping," refer to the FOR
command.

PROGRAM TOSAMPLE

FOR K = 1 TO 100
MOVE A1
MOVE A2

NEXT K
END

This program will move the robot 100 times back and forth
between points A1 and A2.

Sample
program

 STE 80721
– 3-236 –

 ROBOT LANGUAGE MANUALseries Robot Controller

TOOL

TOOL is a system variable used to specify the tool coordinate
system.

TOOL

TOOL = TRANS (0, 0, 0, 0)
TOOL1 = TOOL
MOVE A1 WITH TOOL = TOOL + TRANS (,, 100)

TOOL is a system variable used to specify the tool coordinate
system.
The system variable TOOL can be handled as normal
coordinate-type data.
By referring to TOOL, you can find the values (location) of the
current tool coordinate system.

You can directly designate values for tool offset with one of the
following two methods:

TOOL = TRANS (X, Y, Z, C)
TOOL = {X, Y, Z, C}
(In order to make it clear just what kind of data type you are
using, always try to use the TRANS command.)

X, Y, Z, C: X, Y, Z and C are coordinate values in real number
(unit: mm or deg).

The TOOL coordinate system is created by "sliding" a distance of
X, Y and Z along the respective axes of the mechanical interface
coordinate system and than twisting the new Z axis by an
amount C.

Purpose

Format

Examples

Analysis
and

advice

 STE 80721
– 3-237 –

 ROBOT LANGUAGE MANUALseries Robot Controller

TOOL must be used in an expression.

Be aware that if you change tool offset within a program, there
may be some misalignment between the positions as taught and
the robot movement.

PROGRAM TOOLSAMPLE

MOVE A1
MOVE A2
TOOL = TOOL + TRANS (,, 500)
MOVE A1
MOVE A2
TOOL = TRANS ()

END

This program moves 500 mm along the Z axis of the tool
coordinate system, and after that the robot moves to a point
above 500 mm from the taught position.

Sample
program

 STE 80721
– 3-238 –

 ROBOT LANGUAGE MANUALseries Robot Controller

TORQUE

The TORQUE command is used to specify the limit value of
torque for each axis.

TORQUE = {<expression>, <expression>, <expression>,
<expression>, <expression>}

TORQUE = {300, 300, 100, 300, 300}
MOVE A1 WITH TORQUE = {T, T, T, T, T}

Purpose

Format

Examples

The TORQUE command is used to specify the limit value of
torque for each axis.

Analysis
and

advice
TORQUE is a system variable having five data elements
corresponding to the five axes. The TORQUE command
specifies the limit values of torque for five axes in the { } bracket
following the TORQUE statement. Such data specifications are
divided by commas with the first specification corresponding to
Axis 1, the second to Axis 2, and so on.

The torque control value is expressed as a percentage of the
torque rating of the corresponding motor. When there are no
restrictions on torque, a motor may output up to 100% of its
torque rating. Should torque control values be abbreviated, the
controller will assume all non-specified torques to be 0.

When a value less than 100 is specified, a detection level of
step-out and motor lock error will be decreased.

You may use constants, variables or calculations for the
<expression> terms. However, you may not use vector-type
data.

When the limit value of torque not more than 0 is specified the
value is taken as 0.

 STE 80721
– 3-239 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Note that if the torque setting is too low, the robot will not be able
to move properly and you will get an error.

PROGRAM TORQUESMPL Sample

MOVE A1 program
TORQUE = {100, 100, 100, 100, 100}
MOVE A2
OPEN
DELAY 0.5
MOVE A1
TORQUE = {200, 200, 200, 200, 200}
READY

END

This program limits the torque of the Z axis (Axis 3) to 100% of
the motor torque rating as the robot approaches point A2.

 STE 80721
– 3-240 –

 ROBOT LANGUAGE MANUALseries Robot Controller

TP

The TP command is used with the PRINT and INPUT commands
to specify the teach pendant as the communications channel.

PRINT [{COM0 | COM1 | TP},]
{<character string> | <expression>} [,{<character string> |
<expression>}] ... [,CR]

INPUT [{COM0 | COM1 | TP},]
<variable> [, <variable>] …..

PRINT TP, "*** INPUT N ***", CR
PRINT TP, N, N*10, CR
INPUT TP, K

The TP command is used with PRINT and INPUT commands to
specify the teach pendant as the communications channel.

When TP is used to specify a communications channel, the
controller will input and output data with the teach pendant on
the communications channel (COM0) allocated to the teach
pendant.

If you do not specify a communication channel for a PRINT or
INPUT command, the controller will output (or input) your data to
(or from) the teach pendant.

See the PRINT and INPUT commands for more information on
communication processing.

Purpose

Format

Examples

Analysis
and

advice

 STE 80721
– 3-241 –

 ROBOT LANGUAGE MANUALseries Robot Controller

PROGRAM COMSAMPLE

PRINT TP, "*** INPUT N ***", CR
INPUT TP, N
PRINT TP, N, CR

END

This program will input a number from the teach pendant and
output it right back to the teach pendant.

Sample
program

 STE 80721
– 3-242 –

 ROBOT LANGUAGE MANUALseries Robot Controller

TRANS

The TRANS command is used to create coordinate-type data.

TRANS (<expression>, <expression>, <expression>,
<expression>)

A = TRANS (100, 100, 0, 0)
WORK = WORK + TRANS (100, 100)

The TRANS command is used to create coordinate-type
variables.

The <expression) elements contain, from left to right, coordinate
data values for X, Y, Z and C. Elements X, Y and Z are in units
of millimeters and element C is in units of degrees.

You may use constants, variables or calculations for the
<expression> terms. However, you may not use vector-type
data. Any omitted <expression> terms will be taken as 0.

This command must be used in an expression.

PROGRAM TRANSSMPL

MOVE A1
MOVE A2
WORK=TRANS (,, 300)
MOVE A1 WITH WORK=WORK1
MOVE A2 WITH WORK=WORK1

END

This sets the values of the work coordinate system to Z=300,
X=0, Y=0,A=0, B=0, C=0.

Purpose

Format

Examples

Analysis
and

advice

Sample
program

 STE 80721
– 3-243 –

 ROBOT LANGUAGE MANUALseries Robot Controller

WAIT

This function waits until the condition is established.

WAIT <logical expression>

WAIT DIN (1)
WAIT TIMER == 0
WAIT MOTION >= 100

This function delays program execution until the condition of
<logical expression> is established.

The condition is monitored, irrespective of the ongoing robot
motion.

PROGRAM WAITSAMPLE

WAIT DIN (1)
MOVE A1
MOVE A2
MOVE A3

END

Purpose

Format

Examples

Analysis
and

advice

Sample
program Waits until input signal 1 is ON.

 STE 80721
– 3-244 –

 ROBOT LANGUAGE MANUALseries Robot Controller

WITH

The WITH statement is used to add a conditional statement to a
movement command.

WITH <statement> [, <statement>]...

MOVE A1 WITH SPEED = 50
MOVE A1 WITH TOOL = TOOL1, PASS = 80

The WITH statement is used to specify movement conditions
corresponding to individual movement commands.

The movement conditions, such as speed, acceleration, and
deceleration, are determined according to the set values of the
system variables required for robot movement. In order to
change movement conditions for a single motion, the
corresponding movement condition is specified using the WITH
clause. The movement condition specified by the WITH clause
becomes valid only in the movement command where the WITH
clause has been specified. The values of the system variables
remain unchanged after and before the execution of the
movement command.

The following movement conditions may be specified in the
<statement> term. Should you wish to specify more than one
such condition, be sure to keep the terms separate with
commas.

Purpose

Format

Examples

Analysis
and

advice

 STE 80721
– 3-245 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Movement condition System variable

name
Robot configuration CONFIG
Positioning accuracy ACCUR
Acceleration (during
acceleration)

ACCEL

Deceleration (during
deceleration)

DECEL

Speed SPEED
Short-cut movement parameter PASS
Max. torque for each axis TORQUE
Servo gain for each axis GAIN
Tool coordinate system TOOL
Base coordinate system BASE
Work coordinate system WORK
Robot load PAYLOAD

PROGRAM WITHSAMPLE Sample

program SPEED = 50
MOVE A1
MOVE A2 WITH SPEED = 100
MOVE A3
MOVE A4
END

This program will move to all points at half (50%) speed with the
exception of point A2, to which the robot will move at full (100%)
speed.

 STE 80721
– 3-246 –

 ROBOT LANGUAGE MANUALseries Robot Controller

WORK

WORK is a system variable used to specify the work coordinate
system.

Purpose

WORK

Format

WORK TRANS (0, 0, 0, 0)

Examples
WORK1 WORK
MOVE A1 WITH WORK = WORK + TRANS (,, 100)

WORK is a system variable used to specify the work coordinate
system. It can be handled as normal coordinate-type data. By
referring to WORK, you can find the values (location) of the
present work coordinate system.

Analysis
and

advice

You can directly designate values for work coordinates with one
of the following two methods:

WORK = TRANS (X, Y, Z, C)
WORK = {X, Y, Z, C}
(In order to make it clear just what kind of data type you are
using, always try to use the TRANS command.)

X, Y, Z, C: X, Y, Z and C are coordinate values in real number
(unit: mm or deg).

The WORK coordinate system is created by "sliding" a distance
of X, Y and Z along the respective axes of the WORLD
coordinate system and then twisting the new Z axis by an
amount C.

 STE 80721
– 3-247 –

 ROBOT LANGUAGE MANUALseries Robot Controller

WORK must be used in an expression.

When positional data is entered with the teach pendant, the work
coordinate system in effect at that time is also entered.
Afterwards, when a movement command is executed using that
positional data, the work coordinate system will automatically
switch over to that in effect when the positional data was
recorded. When you wish to move the robot in terms of two (or
more) work coordinate systems (e.g., the work coordinate
system in effect during teaching and a different coordinate
system), you may either:

(1) Use the WITH statement to specify the work coordinate
system in effect for that movement;
or

(2) Change the work coordinate data itself.

Be aware that if you change work coordinate systems within a
program, there may be some misalignment between the
positions as taught and the robot movement.

PROGRAM WORKSAMPLE Sample

MOVE A1 program

MOVE A2
WORK1 = WORK + TRANS (,, 300)
MOVE A1 WITH WORK = WORK1
MOVE A2 WITH WORK = WORK1

END

The WORK command moves 300 mm along the Z axis of the
work coordinate system, and after that the robot moves to a point
above 300 mm from the taught position.

 STE 80721
– 3-248 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Section 4

Program Examples

In this section, we explain various programming examples using the SCOL language.
When applying these programs to an actual robot, be sure to modify the programs
accordingly to match individual robot operating conditions such as the work environment
and range of movement.

(1) Program to move robot back to its mechanical origins
This program moves the robot back to its mechanical origins (zero-points for each
axis). Using absolute single shaft movement, the robot will zero itself starting with
the Z-axis (Axis 3) and then working in from the tip to the base.

PROGRAM ORIGIN
MOVEA 3, 0
MOVEA 5, 0
MOVEA 4, 0
MOVEA 2, 0
MOVEA 1, 0

END

(2) Warm-up program
This program is used to warm up the robot before beginning work. The robot will
start out slowly and gradually speed up.

PROGRAM WARMINGUP
FOR K = 1 TO 100

SPEED = K
MOVEA 3, 100
MOVEA 3, 0
MOVEA 5, 50
MOVEA 5, 0
MOVEA 4, 50
MOVEA 4, 0
MOVEA 2, 50
MOVEA 2, 0

STE 80721

– 4-1 –

 ROBOT LANGUAGE MANUALseries Robot Controller

MOVEA 1, 50
MOVEA 1, 0

NEXT K
END

(3) Robot motion
A program for causing the robot to be moved from position A1 to position A2. The
robot movement speed is set to 20 % of the maximum speed.

(a) When the PTP motion (MOVE command) is used:
PROGRAM MOVEA1A2

SPEED=20
MOVE A1
MOVE A2

END

(b) When the linear interpolated motion (MOVES command) is used:
PROGRAM MOVESA1A2

SPEED=20
MOVES A1
MOVES A2

END

(4) I/O signals
A program where turning on input signals 1 to 4 causes output signals 1 to 4 to be
turned on, while turning off input signals 1 to 4 causes output signals 1 to 4 to be
turned off.

PROGRAM SAMPLE
IF DIN(1) THEN DOUT(1) ELSE DOUT(–1)
IF DIN(2) THEN DOUT(2) ELSE DOUT(–2)
IF DIN(3) THEN DOUT(3) ELSE DOUT(–3)
IF DIN(4) THEN DOUT(4) ELSE DOUT(–4)
END

STE 80721

– 4-2 –

 ROBOT LANGUAGE MANUALseries Robot Controller

(5) Interlock
A program for stopping the motion of the robot while input signal 1 is turned off in
positions A1 to A4. The movement speed of the robot is set to 20% of the
maximum speed.

(a) When WAIT command is used:
PROGRAM SAMPLE

SPEED=20
WAIT DIN(1)
MOVE A1
WAIT DIN(1)
MOVE A2
WAIT DIN(1)
MOVE A3
WAIT DIN(1)
MOVE A4

END

(b) When the robot motion is stopped with the ON command and waits until input
signal 1 is turned on:

PROGRAM SAMPLE
SPEED=20
ENABLE NOWAIT
ON DIN(–1) BREAK DO SUB
WAIT DIN(1)
MOVE A1
MOVE A2
MOVE A3
MOVE A4

END
PROGRAM SUB

WAIT DIN(1)
RESUME
ON DIN(–1) BREAK DO SUB

END

STE 80721

– 4-3 –

 ROBOT LANGUAGE MANUALseries Robot Controller

(6) Pick and place
A program for picking up a workpiece at position A1 and placing it at position A2.
The hand is opened/closed with output signal 201. The movement speed of the
robot is set to 20 % of the maximum speed.

 (a) When positions just above positions A1 and A2 are taught as A3 and A4,
respectively:

PROGRAM SAMPLE
SPEED=20
DOUT(–201)
MOVE A3
MOVE A1
DOUT(201)
DELAY 0.5
MOVE A3
MOVE A4
MOVE A2
DOUT(–201)
DELAY 0.5
MOVE A4

END

 (b) When the robot is moved to a position over the taught position in the format of
"MOVE A1+POINT(0,0,20)".

PROGRAM SAMPLE
SPEED=20
DOUT(–201)
MOVE A1+POINT(0,0,20)
MOVE A1
DOUT(201)
DELAY 0.5
MOVE A1+POINT(0,0,20)
MOVE A2+POINT(0,0,20)
MOVE A2
DOUT(–201)
DELAY 0.5

STE 80721

– 4-4 –

 ROBOT LANGUAGE MANUALseries Robot Controller

MOVE A2+POINT(0,0,20)
END

 (c) When a short-cut motion is executed:

PROGRAM SAMPLE
SPEED=20
DOUT(–201)
ENABLE PASS
PASS=80
MOVE A1+POINT(0,0,50)
DISABLE PASS
MOVE A1
DOUT(201)
DELAY 0.5
ENABLE PASS
MOVE A1+POINT(0,0,50)
MOVE A2+POINT(0,0,50)
DISABLE PASS
MOVE A2
DOUT(–201)
DELAY 0.5
ENABLE PASS
MOVE A2+POINT(0,0,50)

END

STE 80721

– 4-5 –

 ROBOT LANGUAGE MANUALseries Robot Controller

P11 P1N

M row

P MN

N column

(7) Palletize

Consider a program for placing parts on a pallet as shown in the right hand figure.

Pallet size:
M rows x N columns

Teaching positions:
P11: Position of column 1 and row 1 of pallet
P1N: Position of row 1 and column N of pallet
PMN: Position of row M and column N of pallet
PP: Part unloading position
PO: Standby position

Designation of I/O signals:

DI1: Pallet standby (This signal is turned on when the pallet is in the
operating position)

DI2: Part standby (This signal is turned on when a part can be picked up.)

DO1: Hand close (This signal is turned on when the hand is closed.)

DO2: One pallet operation completion (This signal is turned on when all parts
are placed on the pallet. When the pallet is removed and then the pallet
standby signal is turned off.)

STE 80721

– 4-6 –

 ROBOT LANGUAGE MANUALseries Robot Controller

PROGRAM PALLET
MOVE P0
RESET DOUT
M=10 Specifies the number of lines and rows.
N=15
RX=(P1N.X–P11.X) /(N–1) Computes the shift amount per element.
RY=(P1N.Y–P11.Y)/(N–1)
LX=(PMN.X–P1N.X)/(M–1)
LY=(PMN.Y–P1N.Y)/(M–1)
PASS=80
ENABLE PASS
ENABLE NOWAIT
L=0
LOOPL: Repeats the operation for each line.

R=0
LOOPR: Repeats the operation for each row.

MOVE PP+POINT(0,0,50)
WAIT DIN(2)
MOVE PP
WAIT MOTION>=l00
DOUT(1) Unloads the part.
DELAY 0.5
MOVE PP+POINT(0,0,50)
MOVE P11+POINT(R*RX+L*LX,R*RY+L*LY, 100)
WAIT DIN(1)
MOVE P11+POINT(R*RX+L*LX,R*RY+L*LY)
WAIT MOTION>=100
DOUT(–1) Places the part.
DELAY 0.5
MOVE P11+POINT(R*RX+L*LX,R*RY+L*LY, 100)

R = R + 1
IF R<=N–1 THEN GOTO LOOPR
L = L + 1
IF L<=M–1 THEN GOTO LOOPL
WAIT MOTION>=l00
DOUT(2)

STE 80721

– 4-7 –

 ROBOT LANGUAGE MANUALseries Robot Controller

WAIT DIN(–2)
MOVE P0

END

(8) Creating a program for monitoring an insertion error
A program for detecting a part insertion error and for an error handling is as
follows.

A1: Position to insert the part

 ACCUR=COARSE Sets the positioning accuracy to coarse. [1]

 MOVE A1+POINT(0, 0, 50) Moves the hand to a position 50 mm just over
the part insertion point.

 SETGAIN(0, 0, 1, 0, 0) Turns off the servo controls except for axis Z.
[2]

 TORQUE={300, 300, 50, 300, 300} Limits the torque of axis Z to 50%. [3]

 MOVE A1 Inserts all the parts.

 SETGAIN (0, 0, 0, 0, 0) Turns off the servo control for all the axis. [4]

 MOVE HERE

 SETGAIN (0, 0, 1, 0, 0) Turns on the servo control for axis Z. [5]
 MOVE HERE

 HS=HERE.Z–A1.Z When the difference of the height between
 IF HS<5 THEN GOTO OK the current position and the inserted position

is less than 5 mm, it is determined that the
inserted position is normal. [6]

 SETGAIN(1, 1, 1, 1, 1) Turns on the servo controls for all the axis,
 DELAY 0.1 returns the torque to 300% and moves the
 TORQUE={300, 300, 300, 300, 300} hand to a position 50 mm just over the
 DELAY 0.1 part insertion point.
 MOVE A1+POINT(0, 0, 50)

STE 80721
– 4-8 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Process in the case that the parts have been abnormally inserted.

OK:
SETGAIN(1, 1, 1, 1, 1) Turns on the servo controls for all

the axes, returns the torque to 300%
and moves the hand to a position 50
mm just over the part insertion point.

DELAY 0.1
TORQUE={300, 300, 300, 300, 300}
DELAY 0.1
MOVE A1+POINT(0, 0, 50)

Process in the case that the parts have been normally inserted.

Comments for program description:

 [1] Unless the positioning accuracy is set to coarse, the robot system may detect
an error and thereby cause the automatic operation to be stopped.

 [2] By turning off the servo controls except for axis Z, the robot can be freely moved
on the X–Y plane. Thus, when workpiece or part has been chamfered, it can
be inserted along the chamfered surface.

 [3] With the TORQUE command, the torque which occurs in the motor is limited.
When an insertion error occurs, the force applied to the work and hand is
suppressed. (Normally, the torque is set to 300 % of the rating value.)
By suppressing the torque to less than 100 %, the error detection level of the
controller will be decreased. Thus, when monitoring the insertion error, it is
necessary to set the torque to less than 100%. When the torque setting value
is excessively decreased, since the torque necessary for moving the robot
cannot be obtained, an error takes place.

 [4] The position being read with the HERE command is the position commanded to
the robot. To read the present position of the robot with the HERE command, it
is necessary to turn off the servo control and then turn it on again. Thus, with
the GAIN command, the servo controls for all the axes are turned off.

[5] The servo control which was turned off in ↓ is turned on.

[6] The difference of height between the current position and the insertion position
should be specified to a proper value.

STE 80721

– 4-9 –

 ROBOT LANGUAGE MANUALseries Robot Controller

(9) Program example of short-cut (PASS) movement
The following programming example uses short-cut movement to carry out "pick
and place" operation.

 B C E R: Wait station

A: Part pick-up location D: Part insertion
location

F: Dump location for
defective parts

The robot will take a part from the part pick-up location (A), move through points B
and C, and try to insert the part at the part insertion location (D). If the part is
defective (i.e., cannot be inserted), the robot will move through points C and E, and
place the part at the dump location for defective parts (F).

Short-cut movement is used throughout the program.

The following signals are used in this program:

Input signals:

DI1: Completion of pick-up preparation
Turns ON when preparation of the part to be picked up is completed.

DI2: Completion of insertion preparation
Turns ON when preparation of the part insert position is completed.

DI3: Defective part
Turns ON when the grasped part is determined to be defective.

DI4: Completion of defective part dumping preparation
Turns ON when preparation of the part dump position is completed.

Output signals:

DO1: Completion of part pick-up
Turns ON when part pick-up is completed and preparation of the next part
may be begun.

STE 80721

– 4-10 –

 ROBOT LANGUAGE MANUALseries Robot Controller

DO2: Completion of part insertion
Turns ON when part insertion is completed and preparation for the insertion
of the next part may be begun.

DO3: Completion of defective part dumping
Turns ON when dumping of a defective part is completed and preparation for
dumping the next defective part may be begun.

The example program is presented below:

PROGRAM PICKPLACE

* PICK AND PLACE SAMPLE PROGRAM *

INPUT: Initial settings
OPEN1
DOUT (1, 2, 3) Part pick-up, part insertion
ENABLE NOWAIT Completion of disposal for defective part
SPEED = 80
PASS = 80
ENABLE PASS
MOVE B Move to position above part pick-up location

PICKUP: Section for picking up part
DOUT (–1) Begin picking up part
WAIT DIN (1) Wait until pick-up preparations are completed
MOVE A Lower down to A
WAIT MOTION > = 100
CLOSE1 Close hand
DELAY 0. 3
MOVE B Move up to B

PLACE: Section for placing part
MOVE C Move to position above part insertion location
DOUT (1, –2) Part pick-up complete – begin part insertion
WAIT DIN (2) Wait until insertion preparations are completed
MOVE D Lower down to D
WAIT MOTION > = 100
IF DIN (3) THEN GOTO ERR Judgment of part as defective
OPEN1 Open hand
DELAY 0. 3

STE 80721

– 4-11 –

 ROBOT LANGUAGE MANUALseries Robot Controller

MOVE C Move up to C
MOVE B Move up to position above part pick-up location
DOUT (2) Completion of part insertion
IF MODE = = CYCLE THEN GOTO CYCLEEND

Mode check
GOTO PICKUP

ERR:
MOVE C Section for handling defective part
 Move to position above part insertion location
MOVE E Move to position above defective part dump

location
DOUT (–3) Begin dumping of defective part
WAIT DIN (4) Wait until dumping preparations are completed
MOVE F Lower down to F
WAIT MOTION > = 100
OPEN1 Open hand
DELAY 0. 3
MOVE E Move up to E
MOVE B Move to position above part pick-up location
DOUT (3) Completion of dumping of defective part
IF MODE = = CYCLE THEN GOTO CYCLEEND
 Mode check
GOTO PICKUP

CYCLEEND: Processing for end of cycle
MOVE R Move to wait station

END

STE 80721

– 4-12 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Section 5

Programming Hints and Warnings

This section explains timing considerations, things not to do, and things to watch out for
when writing up a program.

5.1 Program Execution Timing

Robot programs are executed one line at a time starting from the top. Normally,
when a robot carries out a movement command, the next command is not executed
until final positioning for that movement is completed. However, when handling I/O
signals and other operations not directly related to robot movement, this causes
time to be wasted (waiting for the movement to be completed).

In order to efficiently utilize time and speed up the robot as much as possible, the
SCOL language allows you to input/output signals and to process communications
while the robot is moving.

5.1.1 Arm Movement and Signal I/O Timing

When inputting or outputting a signal, the robot program instructions written in the
robot language specify whether or not to wait for the arm to complete the motion.

The system switch NOWAIT is used to tell the controller whether to wait for the robot
to stop moving (finish positioning itself) before inputting or outputting signals.

ENABLE NOWAIT This tells the controller not to wait for the arm to finish
positioning itself before inputting or outputting signals.

DISABLE NOWAIT This tells the controller to wait for the arm to finish
positioning itself before inputting or outputting signals.

The initial (default) setting is DISABLE NOWAIT.

An example program is shown below. Using this program, we will describe I/O
signal timing relative to command processing and arm movement.

STE 80721
– 5-1 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Example: Let's consider the case of executing the following commands.

PROGRAM SAMPLE
MOVE P1
DOUT (1)
MOVE P2
DOUT (2)
MOVE P3
DOUT (3)
MOVE P4
DOUT (4)
MOVE P5
DOUT (5)

END

 (1) Timing when DISABLE NOWAIT is in effect

C
om

m
an

d
pr

oc
es

si
ng

M
O

V
E

 P
1

W
ai

t f
or

 fi
ni

sh
 o

f
m

ot
io

n

D
O

U
T(

1)

M
O

V
E

 P
2

W
ai

t f
or

 fi
ni

sh
 o

f
m

ot
io

n

D
O

U
T(

2)

M
O

V
E

 P
3

W
ai

t f
or

 fi
ni

sh
 o

f
m

ot
io

n

D
O

U
T(

3)

M
O

V
E

 P
4

W
ai

t f
or

 fi
ni

sh
 o

f
m

ot
io

n

D
O

U
T(

4)

M
O

V
E

 P
5

W
ai

t f
or

 fi
ni

sh
 o

f
m

ot
io

n

A
rm

 m
ot

io
n

Move to P1

Move to P2

Move to P3

Move to P4

Move to P5

As shown above, signals are output after the arm has stopped moving.

Note: When ACCURE=COARSE is specified, since the subsequent command
is executed before the positioning operation is completed, a signal may
be output before the robot motion is completely stopped.

STE 80721
– 5-2 –

 ROBOT LANGUAGE MANUALseries Robot Controller

 (2) Timing when ENABLE NOWAIT is in effect

C
om

m
an

d
pr

oc
es

si
ng

M
O

V
E

 P
1

D
O

U
T(

1)

M
O

V
E

 P
2

D
O

U
T(

2)

M
O

V
E

 P
3

D
O

U
T(

3)

M
O

V
E

 P
4

D
O

U
T(

4)

W
ai

t f
or

 fi
ni

sh
 o

f
m

ot
io

n

M
O

V
E

 P
5

D
O

U
T(

5)

A
rm

 m
ot

io
n

Move to P1

Move to P2

Move to P3

Move to P4

Move to P5

The arm motion by the previous command completes, and the arm motion by
the next command starts. Even if the arm is moving, however, processing of
signal output described next to that motion command is executed, which is
called "pre-reading of motion command." This robot controller pre-reads up
to four (4) motion commands. (While the arm is moving to point P1, the
controller pre-reads motion commands up to point P4 and waits for
completion of the motion just before the arm executes the motion command to
point P5.)

5.1.2 Synchronization of Arm Movement and Program Execution

In the preceding paragraph, we explain that the ongoing arm motion is executed in
parallel with signal input/output. To explain it in more detail, the arm motion and
SCOL commands other than the arm motion command can be executed at the
same time.

In the normal SCOL program, therefore, processing of the program is executed
apparently prior to the arm motion, because a special procedure (i.e., "WAIT
MOTION >= 100" command) is required to synchronize the arm motion with
program execution. This command will not complete until the arm has been
located. Describe "WAIT MOTION >= 100" before the command to be executed in
synchronization.

An example program is shown below. Using this program, we will describe I/O
signal timing relative to command processing and arm movement.

STE 80721
– 5-3 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Example: Let's consider the case of executing the following commands.

PROGRAM SAMPLE
MOVE P1
K = 1
DOUT (1)
K = K + 1
WAIT MOTION >= 100
K = K – 1
DOUT (2)

END

 (1) Timing when DISABLE NOWAIT is in effect

C
om

m
an

d
pr

oc
es

si
ng

M
O

V
E

 P
1

K
=1

W
ai

t f
or

 fi
ni

sh
 o

f
m

ot
io

n

D
O

U
T(

1)

K
=K

+1

W
A

IT

M
O

TI
O

N
>=

10
0

K
=K

–1

D
O

U
T(

2)

A
rm

 m
ot

io
n

Move to P1

The DOUT command waits until the arm movement finishes.

 (2) Timing when ENABLE NOWAIT is in effect

C
om

m
an

d
pr

oc
es

si
ng

M
O

V
E

 P
1

K
=1

D
O

U
T(

1)

K
=K

+1

W
A

IT

M
O

TI
O

N
>=

10
0

K
=K

–1

D
O

U
T(

2)

A
rm

 m
ot

io
n

Move to P1

The command of “WAIT MOTION >=100” waits until the arm movement
finishes.

STE 80721
– 5-4 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Note: In addition to signal input and output, processing of commands other
than those given below goes on, irrespective of the robot movement.

DIN BCDIN INPUT PLCINPUT
DOUT BCDOUT PULOUT PRINT PLCPRINT

5.1.3 DELAY Command and WAIT Command

To stop the arm motion for the specified time during program execution, there are
two ways. One method utilizes the DELAY command and the other method utilizes
the WAIT command in conjunction with the TIMER command. When writing a
program, you should keep in mind that there is a difference in execution timing
between the two.

 (1) DELAY command
The DELAY command is a kind of motion control commands and stops the
arm motion for the predetermined time. However, as the SCOL language
program is processed in synchronization with ongoing arm motion, the
program is executed even during execution of the DELAY command.

Example: Let's consider the case of executing the following commands.

PROGRAM SAMPLE
ENABLE NOWAIT
DELAY 2.0
K = 10
DOUT (1)
K = K – 1
MOVE P1
DOUT (–1)

END

STE 80721
– 5-5 –

 ROBOT LANGUAGE MANUALseries Robot Controller

C
om

m
an

d
pr

oc
es

si
ng

E
N

A
B

LE

N
O

W
A

IT

D
E

LA
Y

2.
0

K
=1

0

D
O

U
T(

1)

K
=K

–1

M
O

V
E

 P
1

D
O

U
T(

–1
)

A
rm

 m
ot

io
n

Arm stops for 2.0 seconds

Move to P1

Since the program continues to be executed even after the DELAY command
causes the robot arm to pause, Signal 1 will be output while the arm is
stopped.

Should you wish to delay program execution as well, you should insert a
“WAIT MOTION >= 100” command between the DELAY command and DOUT
command.

 (2) WAIT command
The WAIT command can be used with the TIMER command to delay program
execution for a specified period of time. However, as with the DELAY
command described above, the program is processed in parallel with the
robot movement and one must be careful of the execution timing.

Example: Let's consider the case of executing the following commands.

PROGRAM SAMPLE
ENABLE NOWAIT
MOVE P1
TIMER = 2
WAIT TIMER = = 0
DOUT (1)
MOVE P2

END

STE 80721
– 5-6 –

 ROBOT LANGUAGE MANUALseries Robot Controller

C
om

m
an

d
pr

oc
es

si
ng

E
N

A
B

LE

N
O

W
A

IT
M

O
V

E
 P

1

TI
<E

R
=2

W
A

IT
 T

IM
E

R
==

0

D
O

U
T(

1)

M
O

V
E

 P
2

Stop preloading
for 2.0 seconds

A

rm
 m

ot
io

n
Move to P1

Move to P2

The delay in program execution specified by the WAIT command comes to an
end while the robot is still moving. When it is necessary for the robot to wait
also, insert a WAIT MOTION statement as shown below:

MOVE P1
WAIT MOTION >= 100
TIMER = 2
WAIT TIMER = = 0

C
om

m
an

d
pr

oc
es

si
ng

E
N

A
B

LE

N
O

W
A

IT
M

O
V

E
 P

1

W
A

IT

M
O

TI
O

N
>=

10
0

TI
<E

R
=2

W
A

IT
 T

IM
E

R
==

0

D
O

U
T(

1)

M
O

V
E

 P
2

Stop for preloading
for 2.0 seconds

A
rm

 m
ot

io
n

Move to P1

Move to P2

STE 80721
– 5-7 –

 ROBOT LANGUAGE MANUALseries Robot Controller

5.2 Things Not to Do When Programming

This paragraph presents restrictions and prohibitions in effect when writing
programs. Refer to the command descriptions in Section 3 for information on
individual commands.

5.2.1 Variables

 (1) Referring to undefined variables
The data type of a variable is first defined when something is substituted into
it. Therefore, do not refer to variables which appear for the first time in your
program. If you do refer to a variable which has not been used (substituted
into) previously, the variable data type and values become undefined. You
will be very sorry when you try to debug your program.

Example:

PROGRAM SAMPLE
IF K < > 0 THEN GOTO RESTART
K = 1
A1 = A

RESTART:
FOR N = 1 TO 3

MOVE A1
A1 = A1 + POINT (100, 100)

NEXT N
END

Here, when the program is first executed, variable K is referenced in the IF
statement. However, variable K has never been used (substituted into)
before, so it becomes undefined. After that, 1 is substituted in K, and so the
variable K takes the value 1.

STE 80721
– 5-8 –

 ROBOT LANGUAGE MANUALseries Robot Controller

5.3 Things to Watch Out for When Writing a Program

This paragraph describes things to watch out for and presents an outline of some
SCOL commands which may come in useful when writing a program.

5.3.1 Types of Commands

A functional classification of the SCOL language was presented in Section 1. Here,
we describe the SCOL language in terms of internal processing.

SCOL commands can be broken down into basic commands, functions and system
variables. Basic commands make up the core of the SCOL language and are
executed in conjunction with parameters following the commands. Functions are
provided as a convenience to make SCOL easier to use. System variables are
used to directly refer to (and change) such items as speed, coordinate systems, etc.
They can be handled like any other variable.

These three types of commands are described in more detail below.

 (1) Basic commands
Basic commands provided by the SCOL language are shown below. Unlike
the functions listed below in Para. (2), you may not use any of these inside of
a (mathematical) expression.

 MOVE MOVES MOVEC MOVEA
 MOVEI MOVEJ DELAY BREAK
 PAUSE RESUME ON ~ DO IGNORE
 GOTO RETURN WAIT STOP
 IF ~ THEN ~ ELSE FOR ~ NEXT
 PRINT INPUT ENABLE DISABLE
 PROGRAM END RESET REMARK
 DIM ~ AS TASK KILL SWITCH
 GLOBAL MAXTASK
 RESTORE MOVESYNC SAVEEND RCYCLE

STE 80721
– 5-9 –

 ROBOT LANGUAGE MANUALseries Robot Controller

 (2) Functions
As opposed to basic commands, functions have the feature that they can
pass arguments back and forth just like subroutine programs (subprograms).
Up to ten arguments can be specified.

Functions can be broken down into built-in functions and system library
functions (which are so called because they are kept in a file in the system
library). In the SCOL language, the system library is called SCOL.LIB, and
unless SCOL.LIB is in the system RAM drive, you will not be able to use any
of the system library functions.

The following built-in functions are provided by SCOL.

 MOTION MOTIONT REMAIN REMAINT
 HERE DEST POINT TRANS
 DIN DOUT PULOUT BCDIN
 BCDOUT SIN COS TAN
 ASIN ACOS ATAN ATAN2
 SQRT ABS SGN INT
 REAL LN LOG10 EXP
 MODE

Built-in functions may be used in (mathematical) expressions with the
exception of the following signal I/O commands: DOUT, PULOUT and
BCDOUT.

The following system library functions are provided by SCOL (and are
contained in the system library).

 OPEN1 CLOSE1 OPENI1 CLOSEI1
 OPEN2 CLOSE2 OPENI2 CLOSEI2
 READY ONGAIN OFFGAIN FREELOAD
 SETGAIN

If you make a subprogram and give it the same name as a function contained
in the system library, this new subprogram should be executed as a priority.

STE 80721
– 5-10 –

 ROBOT LANGUAGE MANUALseries Robot Controller

 (3) System variables
System variables are used to change system conditions and can be handled
just like any other variable.
The following system variables are provided by SCOL.

 CONFIG ACCUR ACCEL DECEL
 SPEED PASS TORQUE GAIN
 TOOL BASE WORK TIMER
 ERROR PAYLOAD TID

5.3.2 Robot Coordinate Systems

This paragraph describes robot coordinate systems handled by the SCOL language.

 (1) Robot coordinate systems
The robot has five types of coordinate systems, i.e. the world coordinate
system, the base coordinate system, the work coordinate system, the
mechanical interface coordinate system and the tool coordinate system. A
brief description of these systems is presented below:

 (a) World coordinate system (absolute coordinate system)
The world coordinate system is a single system used to describe the
orientation of the work site surrounding the robot. If this coordinate system
can be defined independently of the robot.

If this coordinate system is set at the home position of the robot, the world
coordinate system and the base coordinate system are the same.

 (b) Base coordinate system (mechanical coordinate system)
The base coordinate system is the system used by the robot itself. The
location of the base coordinate determine is determined by the robot design,
with the origin of the system always being the mechanical origins of the robot.

 (c) Work coordinate system
The work coordinate system is defined in terms of the workpiece to be
handled by the robot.

STE 80721
– 5-11 –

 ROBOT LANGUAGE MANUALseries Robot Controller

 (d) Mechanical interface coordinate system
The mechanical interface coordinate system is defined in terms of an end
effector attached to the robot. This coordinate system will shift in
accordance with robot movement.

 (e) Tool coordinate system
The tool coordinate system is defined in terms of the end of a tool attached to
the robot. This coordinate system will shift in accordance with robot motion.

These coordinate systems play a role when guiding the robot, when teaching
it positions, and when operating it. The world, work, and tool coordinate
systems can be specified when guiding the robot. The robot moves along the
specified coordinate system. However, there is no particular need to worry
about which coordinate system to select when teaching or operating the
robot. Under normal usage, the robot will move to the points you taught it to
move to.

 Caution: Coordinate system and additional axes
Axis 5 (T-axis) of the SCARA robot, and axis 4 (C-axis) and axis 5 (T-axis)
of the Cartesian coordinate robot are the additional axes which will not be
affected by the coordinate system. Values are the same in any
coordinate system selected.

 Fig. 5.1 shows the robot coordinate system.

STE 80721
– 5-12 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Base coordinate system

System variable
BASE

Mechanical interface
coordinate system

System variable
TOOL

Tool coordinate system

Robot position
Configuration

data

Work coordinate system

World coordinate system

System variable
WORK

Fig. 5.1 Robot coordinate system

 (2) Coordinate systems and system variables

The base, work and tool coordinate systems may each contain multiple
coordinate systems, each of which can be selected according to robot tasks.
Each coordinate system can be also specified in the SCOL language
program. These coordinate systems may also be specified (defined) inside
of a program by using the system variables BASE, WORK and TOOL.
These system variables may be used just like any other coordinate-type
system variables.

The meaning of each of these system variables is described below. For
more information on teaching coordinate systems to the robot or selecting
such a coordinate system, refer to the Operator’s Manual.

STE 80721
– 5-13 –

 ROBOT LANGUAGE MANUALseries Robot Controller

 (a) System variable BASE
The system variable BASE defines the origin of the base coordinate system in
terms of the world coordinate system. It is used when it is necessary to base
robot movement on the coordinate system of the work-site (world coordinate
system) or when it is necessary to guide the robot in terms of world
coordinates (as opposed to base coordinates).

With such a system, the robot can be reinstalled in a separate location and
put back into action after simply redefining the location of the base coordinate
system.

Should the value of the BASE system variable be set to all 0, the world
coordinate system and the base coordinate system will become the same.
(Note that the BASE system variable is of a coordinate data-type and contains
four elements, all of which must be set to 0 in order to set the BASE system
variable itself to 0.) You should set BASE to 0 if there is no particular need to
specify a world coordinate system. Also, be careful not to accidentally
change the base coordinate system after it has been set.

 (b) System variable WORK
The system variable WORK defines the origin of the work coordinate system
in terms of the world coordinate system. Should WORK have a value of 0, the
world and work coordinate systems will be the same. (Note that the WORK
system variable is of a coordinate data-type and contains four elements.)

When handling multiple workpieces, multiple work coordinate systems may be
specified to help keep track of where each workpiece is.

Also, the WORK system variable is useful when it is necessary to guide the
robot in relation to the workpiece (rather than, for example, the robot base).
When there is no particular need to specify a work coordinate system, set the
WORK system variable to all 0.

 (c) System variable TOOL
The system variable TOOL defines the origin of the tool coordinate system in
terms of the mechanical interface coordinate system. Should TOOL have a
value of 0, the tool coordinate system and the mechanical interface
coordinate system will be the same.

STE 80721
– 5-14 –

 ROBOT LANGUAGE MANUALseries Robot Controller

When handling multiple tools, multiple tool coordinate systems may be
specified to help keep track of where each tool is. Also, the WORK system
variable is useful when it is necessary to guide the robot in relation to the tool
(rather than, for example, the robot base).

You should be careful when changing any of these system variables in your
program since the coordinate system in which the robot moves will also
change.

 (3) Teaching data and coordinate systems
When you teach a position to the robot, the robot will also record the position
of the tool tip relative to a work coordinate system. In addition, the robot will
also remember the work coordinate system in effect at the time.

When a program using this data is executed, the robot will move to the
position defined by the positional data for that point. However, if the work
coordinate system itself was changed (and is therefore not the same as the
work coordinate system in effect when taught), the same positional data will
define a different point (since the frame of reference is different). Therefore,
the robot will not move to the point as taught, but to another point.

 (4) Changing coordinate system data in the program
A simple explanation of how to change coordinate system data with the
program is presented below. You should not change such data unless you
have a good reason for doing so.

 (a) Changing the base coordinate system
There is no need to change the base coordinate system from the program.

 (b) Changing the work coordinate system
When you teach the robot a position, the robot will also remember the work
coordinate system in effect at the time. When a movement command tells
the robot to move to that point, the current work coordinate system (in effect
at the time the command was encountered in the program) will automatically
change over to the previous work coordinate system (in effect when the point
was taught to the robot).

STE 80721
– 5-15 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Example:
You have three different work coordinate systems, i.e. WORK1, WORK2 and
WORK3. In each coordinate system, you taught the robot one point, i.e. you
have point A1 defined in terms of work coordinate system WORK1, point A2
defined in terms of work coordinate system WORK2, and point A3 defined in
terms of work coordinate system WORK3. When you execute the following
program, the work coordinate system will change as follows.

PROGRAM SAMPLE
MOVE A1: The work system in effect during this command will be WORK1.
MOVE A2: The work system in effect during this command will be WORK2.
MOVE A3: The work system in effect during this command will be WORK3.
END

When handling multiple workpieces, you can carry out the same operation
over and over on different workpieces by changing the work coordinate
system. There are three ways to do this.

 1) Changing the work coordinate system itself
The same operation can be carried out on multiple workpieces by changing
the values of the work coordinate system itself from the program.

Example:
You have three points (A1, A2 and A3) defined in terms of work coordinate
system WORK1. You wish to repeat the operation, but this time in terms of
work coordinate system WORK2.

PROGRAM SAMPLE
DUMMYWORK = WORK1
WORK1 = WORK2
MOVE A1
MOVE A2
MOVE A3
WORK1 = DUMMYWORK

END

Here, the movements to points A1, A2 and A3 were performed in terms of
WORK1 just as before. The only difference is that the value of WORK1 itself
was changed beforehand to that of WORK2. Therefore, in effect, the robot
moved in the frame of reference of WORK2.

STE 80721
– 5-16 –

 ROBOT LANGUAGE MANUALseries Robot Controller

The variable DUMMYWORK is used to hold the value of the original WORK1.
Otherwise, the value of the original WORK1 would be lost forever when you
put the value of WORK2 into WORK1. When the robot is finished moving,
the original value of WORK1 will be restored.

 2) Changing the work coordinate system with a WITH statement
You can change between different work coordinate systems by using WITH
statements.

Example:
You have three points (A1, A2 and A3) defined in terms of work coordinate
system WORK1. You wish to repeat the operation, but this time in terms of
work coordinate system WORK2.

PROGRAM SAMPLE
MOVE A2
WORK2=WORK+TRANS(, , 20)
MOVE A1 WITH WORK = WORK2
MOVE A2 WITH WORK = WORK2
MOVE A3 WITH WORK = WORK2

END

Using WITH statements in this way, it is possible to specify work coordinate
systems different from that used during teaching.

 3) General method
As a general method, we recommend using a combination of the above two
methods. Specifically, your program should use temporary variables to
define the work coordinate system. Every time the workpiece is changed, a
corresponding temporary variable should be use to change over the work
coordinate system.

Example:
You have three points (A1, A2 and A3) defined in terms of work coordinate
system WORK1. You wish to repeat the operation, but this time in terms of
work coordinate system WORK2.

STE 80721
– 5-17 –

 ROBOT LANGUAGE MANUALseries Robot Controller

PROGRAM SAMPLE
WORK2=WORK+TRANS(, , 20)
DUMMYWORK = WORK2
MOVE A1 WITH WORK = DUMMYWORK
MOVE A2 WITH WORK = DUMMYWORK
MOVE A3 WITH WORK = DUMMYWORK

END

 (c) Changing the Tool Coordinate System

By changing the tool coordinate system, you can handle operations in which
tools are changed several times as work progresses.

The robot always uses the current tool coordinate system in order to move the
tip of the tool to the position defined by the work coordinate system.
Therefore, if you are not careful when specifying the tool coordinate system,
the robot may move somewhere unexpected.

Example:
You are using two tools with the tool offsets being TOOL1 and TOOL2.

PROGRAM SAMPLE
TOOL1=TRANS(, , 10)
TOOL2=TRANS(, , 30)
TOOL = TOOL1
MOVE A1
TOOL = TOOL2
MOVE A1

END

This program takes two different tools, and positions the tips of these tools at
the same position (point A1). (Note that the program above does not have a
tool change routine as would be required for actual operation.)

STE 80721
– 5-18 –

 ROBOT LANGUAGE MANUALseries Robot Controller

5.3.3 Short-Cut Movement

The SCOL language considers one movement to start when the robot begins
moving and to stop when the robot finishes positioning itself. Normally, one
movement command corresponds to one movement.

However, one may also direct the robot to move continuously under multiple
movement commands without stopping to position itself before heading for the next
destination or passing the nearest point toward the next destination. This is called
short-cut movement.

Short-cut movement reduces operating time since the robot can both cut corners
and not have to spend time positioning itself.

The short-cut movement cannot be executed between MOVES or MOVEC
command and other movement commands. (However, the short-cut movement is
available between the MOVES command and the MOVEC command.)

 (1) Specifying Short-Cut Movement
Short-cut movement is invoked or discontinued with the system switch PASS.

ENABLE PASS – Invokes short-cut motion.
DISABLE PASS – Discontinues short-cut motion.

With short-cut motion, the robot continuously changes the speeds of the axes
while being careful not to exceed any maximum speeds. When the amount
of the movement per one movement command has exceeded the specified
percentage, the robot will begin to execute the next movement command.
This percentage is specified with the system variable PASS (which is not the
same thing as the system switch PASS). This percentage which is formally
called the short-cut movement parameter may be specified as an integer
value between 0 and 100. Note that anything smaller than 50 will be treated
as 50%.

Example:

PROGRAM SAMPLE
MOVE A1 Move to point A1.
PASS = 80 Set the short-cut movement parameter to 80%.
ENABLE PASS Invoke short-cut movement.
MOVE A2 When 80% of the movement to point A2 is

completed, begin moving to point A3.
MOVE A3 When 80% of the movement to point A3 is

STE 80721
– 5-19 –

 ROBOT LANGUAGE MANUALseries Robot Controller

completed, begin moving to point A4.
DISABLE PASS Discontinue short-cut movement.
MOVE A4 Move to point A4.

END

The short-cut movement parameter may be changed while short-cut motion is
in effect.

Example:

PROGRAM SAMPLE
MOVE A1 Move to point A1.
PASS = 80 Set the short-cut movement parameter to 80%.
ENABLE PASS Invoke short-cut movement.
MOVE A2 When 80% of the movement to point A2 is

completed, begin moving to point A3.
MOVE A3 WITH PASS = 60

When 60% of the movement to point A3 is
completed, begin moving to point A4.

MOVE A4 When 80% of the movement to point A4 is completer,
begin moving to point A5.

PASS = 90 Set the short-cut movement parameter to 90%.
MOVE A5 When 90% of the movement to point A5 is

completed, begin moving to point A6.
DISABLE PASS Discontinue short-cut movement.
MOVE A6 Move to point A6.

END

 (2) Commands which interrupt short-cut movement
The following commands will interrupt short-cut motion should short-cut
motion be in effect at the time.

WAIT command
INPUT command
PRINT command
STOP command
BREAK command
PAUSE command

Furthermore, should DISABLE NOWAIT be in effect, the following commands
will interrupt short-cut motion.

STE 80721
– 5-20 –

 ROBOT LANGUAGE MANUALseries Robot Controller

DOUT command
RESET DOUT command
PULOUT command
DIN command
BCDIN command
BCDOUT command

Moreover, when there are many commands between movement commands
or when the amount of motion of an individual motion is small, the short-cut
motion may be stopped. When the short-cut movement is specified between
the MOVES or MOVEC command and another movement command, the
short-cut movement will be stopped.

 (3) Output signal timing under short-cut movement
Signal output timing under short-cut movement relative to robot arm motion is
described below with the following example.

PROGRAM SAMPLE
MOVE A1
PASS = 80
ENABLE PASS
MOVE A2
DOUT (1)
DISABLE PASS
MOVE A3

END

 (a) Timing under DISABLE NOWAIT

 Command
processing

Signal output

Arm movement

MOVE
A1

PASS
=80

ENABLE
PASS

MOVE
A2

MOVE
A3

DISABLE
PASS

DOUT
(1)

Move to A1 Move to
A2

Output signal 1

Move to
A3

STE 80721
– 5-21 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Here, short-cut movement will be interrupted so that the output signal may be
processed.

 (b) Timing under ENABLE NOWAIT

 Command
processing

Signal output

Arm movement

Output signal 1

Move to A1 Move to A2 Move to A3

MOVE
 A1

PASS
= 80

ENABLE
PASS

MOVE
 A2

MOVE
 A3

DISABLE
PASS

DOUT
 (1)

Here, the output signal is processed while the arm is in motion.

 (4) Referring to the robot operating condition under short-cut movement
When you refer to the amount of robot movement with the MOTION,
MOTIONT, REMAIN or REMAINT command while under short-cut movement,
a value for one movement command will be returned as the result.

Example:

PROGRAM SAMPLE
MOVE A0
PASS = 80
ENABLE PASS
ON MOTION > = 75 DO DOUT (1)
MOVE A1
MOVE A2
DISABLE PASS

END

Here, Signal 1 will be output when the robot has moved 75% of the specified
value from A0 to A1.

STE 80721
– 5-22 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Command
processing

Signal
output

Arm
movement

Move to A0 Move to A1 Move to A2

80%

75%

Output 1

MOVE
A0

PASS
=80

ENABLE
PASS

ON~ MOVE
A1

MOVE
A2

DISABLE
PASS

 (5) Control parameters for short-cut movement

The short-cut movement parameter has the following meaning.

 100%

A P B

C

Short-cut movement parameter

Short-cut movement

In the above diagram, the robot begins at point A, goes through the vicinity of
point B, and moves to point C. In short-cut movement, the robot will move
from point A towards point B until it reaches point P. When the robot reaches
point P, the robot will start moving towards point C. The position of point P is
defined as a percentage of the total length between points A and B. In other
words, the value of P is the short-cut movement parameter. Sometimes this
parameter is also referred to as the pass rate.

In the above example, the short-cut movement parameter (pass rate) is given
as follows:

Pass rate = ((Distance from A to P) / (Distance from A to B)) * 100 (%)

STE 80721
– 5-23 –

 ROBOT LANGUAGE MANUALseries Robot Controller

The short-cut movement parameter must be in the range of 50 to 100%.
Anything less than 50% will be taken as 50%.
At times, short-cut movement may not work exactly as specified for the
reasons below.

 (a) Restrictions on maximum acceleration
According to the structure of the robot and parts in use, a maximum speed is
determined. Furthermore, robot acceleration and deceleration varies
depending on the reduction of the movement speed of the robot and the use
of the ACCEL and DECEL command written in the robot language. During
short-cut movement, the speed of each axis is calculated so that these
accelerations are not exceeded.

 (b) Restrictions from the following movement
The short-cut movement superimposes the current movement onto the
subsequent movement in such a way that the current movement finishes until
the robot moves 50% of the subsequent movement.

For the reasons described above, the timing with which short-cut movement
begins cannot be speeded up by more than a certain amount. This is true
even should the short-cut movement parameter (pass rate) be made smaller.

 (6) The notice in the case where the direction of the shortcut becomes the

direction of the identical vector
When the fellow of the operation to cut short becomes the one-way, it
sometimes becomes faster than the speed that the falling of the speed
ingredient increased and that the speed specified.

STE 80721
– 5-24 –

 ROBOT LANGUAGE MANUALseries Robot Controller

5.3.4 Robot Configuration

With SCARA robots, viewed from the rotation center of the robot to the configuration
of which the arm extends straight, when the second arm bends to the left (i.e. the
elbow sticks out to the right), it is called the right-handed system, and when the
second arm bends to the right (i.e. the elbow sticks out to the left), it is called the
left-handed system. Therefore the robot can take two postures: right-handed system
configuration and left-handed system configuration to one position (X, Y) specified in
the work coordinate system.

 (1) Configuration during teaching and configuration during operation
When you teach a position to the robot, the robot will also remember (as
positional data) its configuration at the time. With normal operation, the robot
will move with the configuration it had when taught.

 (a) Specifying the configuration for movement
The configuration the robot is to take while moving is specified by the
CONFIG command. The CONFIG command may either be used
independently or with a WITH statement.

When the CONFIG command is used with a WITH statement, the CONFIG
command only has effect for one single movement command.
When a CONFIG command is used by itself, all subsequent movement
commands are executed with that configuration.
When you want the robot to move with the same configuration with which it
was taught, you must set the robot configuration to undefined, CONFIG=0 or
CONFIG=FREE. The initial setting of the robot is FREE.

CONFIG = 1 or CONFIG = LEFTY will set the robot configuration to left, and
CONFIG = 2 or CONFIG = RIGHTY will set the robot configuration to right.

When you set a robot configuration, the robot moves with the specified
configuration during the execution of the subsequent movement command.

Should you operate the robot with a configuration different from that with
which is was taught, there may be a discrepancy between where the robot
was taught to move and where it does move. Therefore, always try to
operate the robot with the configuration the robot was taught.

STE 80721
– 5-25 –

 ROBOT LANGUAGE MANUALseries Robot Controller

 (b) Commands for which the configuration cannot be changed
Any configuration specifications become invalid when any of the following
movement commands are executed.

 1) Interpolated movement commands
With command for the linear interpolation and arc interpolation, since the
configuration of the robot cannot be changed, an error will occur. There are
two interpolated movement commands, i.e. MOVES and MOVEC.

 2) Single axis control commands
With commands which direct one single axis of the robot to move, the robot
configuration may not be specified. There are two single axis control
commands, i.e., MOVEA and MOVEI.

 (2) Moving to positions created in the program
When you directly specify coordinate values to which the robot is to move (for
example, MOVE POINT (100, 100)), the robot will move with the configuration
in effect at the time. This is true even should the configuration be undefined.

Should you create positional data in your program, the configuration of the
robot will be the configuration of the positional data in that variable before you
substituted in your new values. Should that positional data variable have no
specified configuration (i.e., should that variable be substituted into for the first
time), the robot configuration will be undefined (free).

STE 80721
– 5-26 –

 ROBOT LANGUAGE MANUALseries Robot Controller

5.3.5 Data Blocks

This paragraph describes how positional data is kept in the controller files. Note
that there is no particular need for the programmer to worry about this if he or she is
programming with the teach pendant. Rather, this paragraph is for use when
creating a SCOL language program or positional data with any computer other than
the robot controller.

All positional data files are in ASCII code.

 (1) Data blocks

Robot positional data is stored in the controller in units called data blocks.
The file in the controller contains a plurality of programs and one data block.
One file always has one data block. The programs in the same file share
positional data in the data block. You cannot refer to the data block in different
file. The data block stores coordinate data and load data in addition to
positional data.

A data block is declared in a file in the following manner:

DATA
(data declarations)
. . .
END

A data block is declared from DATA to END. Individual datum is declared
from DATA to END one after the other. The data block is declared at the end
of the file. The data block cannot be declared in a program.

 (2) Data declarations
Positional data, coordinate data and load data are normally taught to the robot
with the controller data editor. In such a case, the data is automatically
entered into the data block of the appropriate file.

Data defined (created) in the program (and not by the data editor) is not
entered into the data block. Rather, this data is temporarily stored in the
controller (and not in the file) while the program is running.

Data in a data block is declared with the following format.

<data type> <identifier> = [<element>,]...

STE 80721
– 5-27 –

 ROBOT LANGUAGE MANUALseries Robot Controller

The <data type> designation indicates the type of data you are declaring.
Here, you should write POINT for positional-type data, TRANS for
coordinate-type data, or PAYLOAD for load-type data.

The <identifier> designation indicates the name of the data. The <element>
designation indicates the numerical value of each element in real numbers.
Any omitted <element> designations will be taken as 0.

 (a) Declaring positional data
Positional data is declared with the following format.

POINT <identifier> = X, Y, Z, C, T/<configuration>

X, Y, Z, C and T are coordinate values expressed in real numbers.
Units are in millimeters or degrees.

<configuration> is an integer from 0 to 2 which designates the robot con
figuration.

NONE: Undefined (free)
LEFTY: Left handed
RIGHTY: Right handed

The system constants FREE (undefined), LEFTY (left handed) and RIGHTY
(right handed) may also be used to designate the robot configuration.

Examples:
POINT A = 100, 200, 30, 45, 0
POINT A1 = 444.44, 333.33, , ,/RIGHTY
POINT ZERO =

 (b) Declaring coordinate data
Coordinate data is declared with the following format.

TRANS <identifier> = X, Y, Z, C
X, Y, Z and C are coordinate values expressed in real numbers. Units
are in millimeters or degrees.

Examples:
TRANS WORK1 = 10, 20, 30, 45
TRANS TOOL2 = , , –20,
TRANS ZEROW =

STE 80721
– 5-28 –

 ROBOT LANGUAGE MANUALseries Robot Controller

 (c) Declaring load data
Load data is declared with the following format.

PAYLOAD <identifier> = <mass>, <center of gravity offset>

<mass> is the mass acting on the tip of the robot hand expressed as a real
number. Units are in kilograms.

<center of gravity offset> is the offset for center of gravity acting on the tip of
the robot hand expressed as a real number. Units are in millimeters.

Examples:
PAYLOAD HAND1 = 4.8, 0.48
PAYLOAD HAND2 = 2, 0.004
PAYLOAD HAND0 =

 (3) Specifying work coordinate systems
Positional data is specified in the SCOL language as the position of the tool
tip defined in terms of the work coordinate system. Therefore, positional
data also contains information as to which work system was used to define
that data. To explicitly specify a work coordinate system, use a WORK
statement to give the work coordinate system a name. You may then use
the work coordinate system in your program. The work coordinates declared
in this manner remain in effect until superceded by another WORK statement.

Example:

DATA
POINT A00 = 650, 0, 0, 0, 0
POINT A01 = 400, 400, 0, 0 / RIGHTY
TRANS WORK1 = 100, – 100, 0, 0
WORK WORK1
POINT A10 = 0, 0, 0, 0, 0, 0
POINT A11 = 200, 0, 0, 0, 0, 0
TRANS WORK2 = –100, –100, 0, 0, 0
WORK WORK2
POINT A20 = 246.8, 69.1, 23.5, 18.3, / RIGHTY
POINT A21 = 0, 0, –30, 0, 0 / LEFTY

END

STE 80721
– 5-29 –

 ROBOT LANGUAGE MANUALseries Robot Controller

In the above example, positional data A10 and All are defined in terms of
WORK1, and positional data A20 and A21 are defined in terms of WORK2.
Also, since no particular work coordinate system was in effect when positional
data A00 and A01 were specified; the work coordinate system for these points
is taken as {0, 0, 0, 0}.

STE 80721
– 5-30 –

 ROBOT LANGUAGE MANUALseries Robot Controller

5.3.6 Global Data Block

The variable defined by the SCOL language contains the global data and temporary
data.
The global data which can be referred to from all parts of the program is described
in this paragraph.

The variable defined in the data block is dealt with as the global data. The data
which can be defined in the data block is limited to the position type, coordinate type
and load type.

Data of global integer type, real number type and array type can be used by the
declaration of global data.

 (1) Global data block
The global data is declared in the global data block and is dealt with as a part
of the program in the different manner as the data block. The global data
block is edited by the program editor. The file of the controller contains a
plural number of programs and one global data block. One file has one
global data block.

The global data can be shared in the programs of the same file. The global
data of different file cannot be referred to. The integer data, real number
data and array data can be stored in the global data block.

The global data block is declared in the file, using the following format.

GLOBAL
(Declaration of data)
. . .
END

The global data block is declared in the GLOBAL ~ END statements.
Respective data are declared in the GLOBAL ~ END statements one by one.
The global data block is declared at the head of file.
The global data block cannot be declared in the program.

 (2) Declaration of data
The global data block cannot be edited by the data editor.
It is edited by the program editor in the same manner as the program.
Data in the global data block are declared in the format of substitution
statement for the variable in the same manner as the program.

STE 80721
– 5-31 –

 ROBOT LANGUAGE MANUALseries Robot Controller

 (a) Declaration of integer data
The integer data is declared as shown below.

<Identifier> = <integer constant>
Example: N1 = 1

Note: If the real number is substituted for the integer type global variable in
the program, the decimal places are omitted. Care should be taken.

 (b) Declaration of real number
The real number is declared as shown below.

<Identifier> = <real number constant>
Example: R1 = 1.0

 (c) Declaration of array data
The array data is declared as shown below.

DIM <identifier> (I, j . . .) AS <variable type>

Example: Integer type three dimensional array which has 2 × 3 × 4
elements

 DIM IDAT (2, 3, 4) AS INT

 Real number type two dimensional array which has 4 × 3

elements
 DIM RDAT (10, 50) AS REAL

 Position type one dimensional array which has five elements
 DIM PDAT (5) AS POINT

 Note: For the DIM command, only the type and number of elements of array type

global data are specified and the initial value is unsettled. Like normal
global data, initial values of integer type and real number type data should
be specified in global data blocks, and those of position type, coordinate
type and load type data in data blocks.

STE 80721
– 5-32 –

 ROBOT LANGUAGE MANUALseries Robot Controller

5.3.7 Robot Movement Speed

 (1) Speed in each mode
The range of robot speed utilized in each mode is shown below.

Mode Speed range

PTP 0 ~ 100 % Automatic operation
mode Linear and circular interpolation 0 ~ 100 %

PTP 0 ~ 25% Test operation
mode Linear and circular interpolation 0 ~ 25 %

Note: The maximum speed listed in the specifications is taken as 100%.

With linear and circular interpolation, 1 m/s is taken as 100%.

 (2) Speed for automatic operation
Speeds for automatic and test operation have the following format.

Speed = {Speed setting in program (1 to 100%) × Override speed (1 to
100%); Limit speed}

Here,

Speed setting in program: Setting specified by the SPEED command in the
robot program.

Override speed: Changes all speeds by the same fraction.
Limit speed: Reduces any speeds over the limit down to the

limit value.

Program setting → Override 50% → Limit 25%

STE 80721
– 5-33 –

 ROBOT LANGUAGE MANUALseries Robot Controller

Point 2 Point 3

Point 1 Point 4

100%

70%

40%

35% 25%

20%25%20%50%

Speed for each operation
can be set.

Speed for all movements is
50% of the specified speed
value.

Since the movement
speed from Point 1 to
Point 3 exceeds 25%, it is
reduced to 25%.

5.3.8 Robot Acceleration

Robot acceleration (and deceleration) will vary depending on the following factors.

[1] Operating mode: Linear interpolation (MOVES), point-to-point
(MOVE)

[2] Speed: SPEED command, override
[3] Acceleration commands: ACCEL, DECEL

 (1) The maximum acceleration in each operating mode is calculated from the
robot strength and motor torque and set. Also, the motors will speed up and
slow down in such a way that the robot moves smoothly.

 Speed Speed = 100%

A

50%

25%
B

Time

Change in speed according to override

As shown in the figure above, the acceleration time is inversely proportional to
the speed override setting. The distance of travel during acceleration (areas
of triangle A and B in the figure) is constant independent of the speed override
setting. Therefore, the path of the robot will stay very nearly the same no
matter what the override setting.

STE 80721
– 5-34 –

 ROBOT LANGUAGE MANUALseries Robot Controller

 (2) Acceleration and deceleration are specified separately in the SCOL language.
This comes in useful when handling delicate parts in that, for example, you
can slow the robot down gradually before stopping in order to keep the hand
and workpiece from vibrating.

 Speed

Acceleration
= 100%

Deceleration
= 50%

→ Time

←T→ ← 2T →

STE 80721
– 5-35 –

ROBOT LANGUAGE MANUALseries Robot Controller

Appendix A List of Commands

Movement control commands

MOVE<position>[WITH clause] Simultaneous movement
MOVES<position>[WITH clause] Linear interpolated

movement
MOVEC<position>,<position>[WITH clause] Circular interpolated

movement
MOVEA<axis>,<absolute position>[WITH clause] Absolute single axis

movement
MOVEI<axis>,<relative position>[WITH clause] Relative single axis

movement
MOVEJ<position>,<arch definition> Relative single axis

movement
READY Moves to machine

coordinate origin
DELAY<time> Pauses for specified time
OPEN1,OPEN2 Opens hand immediately
OPENI1,OPENI2 Opens hand
CLOSE1,CLOSE2 Closes hand immediately
CLOSEI1,CLOSEI2 Closes hand
RESUME Resumes interrupted

movement

Program control commands
PROGRAM <program name> Marks beginning of program
ON<monitoring condition> [{BREAK | PAUSE}] Monitors conditions

DO<statement>
IF<logical statement> THEN<statement>
[ELSE<statement>]

Judges conditions

WAIT<logical statement> Waits for an operation
IGNORE<monitoring condition> Cancels monitoring
GOTO<label> Branches unconditionally
GOTO (<expression>) <label> [, <label>]... Branches in accordance with

the value of an expression
RCYCLE Label for cycle setting
RETURN Returns to main program

STE 80721
– 6-1 –

ROBOT LANGUAGE MANUALseries Robot Controller

FOR<variable> = <expression> TO <expression>
[STEP <expression>]

Repeats an operation

NEXT[<variable>]
STOP Stops the program
REMARK[<comment>] Remarks and comments
END Marks end of program
TASK (“program name”) Starts task program
KILL (<expression>) Ends task program
SWITCH Changes over task program
LOADLIB<file name> Dynamic link library build-in

I/O control commands
DIN(<signal name>[,<signal name>]...) Reads in an input signal
DOUT(<signal name>[,<signal name>]...) Outputs a signal
PULOUT(<signal name>[,<signal name>]...) Outputs a pulse signal
RESET<condition>[,<condition>] Resets the controller
BCDIN(<signal name>,<signal length>) Inputs a BCD signal
BCDOUT(<signal name>,<signal
length>,<expression>)

Outputs a BCD signal

HEXIN(<signal name>,<signal length>) Inputs signals in
hexadecimal notation.

HEXOUT(<signal name>,<signal
length>,<expression>)

Outputs signals in
hexadecimal notation.

PRINT[{COM0 | COM1 | TP},]
{<character string> <expression>}
[,{<character string><expression>}]...[, CR] Outputs communication data

INPUT[{COM0 | COM1 | TP},]
<variable>,[<variable>]... Inputs communication data

Movement condition commands

CONFIG=<expression> Specifies configuration
ACCUR=<expression> Specifies positioning

accuracy

STE 80721
– 6-2 –

ROBOT LANGUAGE MANUALseries Robot Controller

ACCEL=<expression> Specifies acceleration

(during acceleration)
DECEL=<expression> Specifies deceleration

(during deceleration)
SPEED=<expression> Specifies speed
PASS=<expression> Short-cut movement

parameter
TORQUE={<expression>, <expression>,
<expression>, <expression>, <expression>}

Torque on each shaft

GAIN={<expression>, <expression>, <expression>,
<expression>, <expression>}

Gain on each shaft

SETGAIN=(<integer>, <integer>, <integer>,
<integer>, <integer>)

Gain on each axis in
synchronous motion

ENABLE<switch>[,<switch>]... System switch on
DISABLE<switch>[,<switch>]... System switch off
PAYLOAD={<mass>,<center of gravity offset>} Sets load data
FREELOAD Cancels load data

Palletize command
INITPLT (<pallet number>,<i>,<j>,<k>) Initializes a pallet
MOVEPLT (<pallet number>, <element number>,
<X>, <Y>,<Z>,<C>)

Moves pallet to specified
position

Calculator commands

SIN(<expression>) Sine
COS(<expression>) Cosine
TAN(<expression>) Tangent
ASIN(<expression>) Arcsine
ACOS(<expression>) Arccosine
ATAN(<expression>) Arctangent
ATAN2(<expression>,<expression>) Arctangent
SQRT(<expression>) Square root
ABS(<expression>) Absolute value

STE 80721
– 6-3 –

ROBOT LANGUAGE MANUALseries Robot Controller

SGN(<expression>) Extracts sign
INT(<expression>) Changes number to an

integer
REAL(<expression>) Changes number to a real

number
LN(<expression>) Natural logarithm
<expression> MOD <expression> Remainder
LOG10 (<expression>) Common logarithm
EXP (<expression>) Exponent to power e
<logical expression> AND <logical expression> Logical product
<logical expression> OR <logical expression> Logical sum
NOT <logical expression> Negation
HERE Present position
DEST Destination position
POINT (<expression>, <expression>, <expression>,
<expression>, <expression>, <configuration>)

Creates positional type data

TRANS (<expression>, <expression>, <expression>,
<expression>)

Creates coordinate type data

Movement condition commands

MOTION Amount of movement which
has been executed

MOTIONT Time expended for a motion
REMAIN Amount of movement

remaining to be executed
REMAINT Time remaining for a motion
TIMER Timer
MODE System operating mode
TOOL Tool coordinate system
BASE Base coordinate system
WORK Work coordinate system

STE 80721
– 6-4 –

ROBOT LANGUAGE MANUALseries Robot Controller

Appendix B List of Reserved Words

ABS ACCEL ACCUR ACOS
AND AS ASIN ATAN
ATAN2 BASE BCDIN BCDOUT
BREAK CLOSE1 CLOSE2 CLOSEI1
CLOSEI2 COARSE COM0 COM1
CONFIG CONT COS CR
CYCLE DATA DECEL DELAY
DEST DIM DIN DISABLE
DO DOUT ELSE ENABLE
END EXP FINE FOR
FREE FREELOAD GAIN GLOBAL
GOTO HERE HEXIN HEXOUT
IF IGNORE INITPLT INPUT
INT KILL LATCH LATCHTRG1~8
LATCHSIG1~8 LATCHPSN1~8 LEFTY LOADLIB
LN LOG10 MAXTASK MOD
MODE MOTION MOTIONT MOVE
MOVEA MOVEC MOVEI MOVEJ
MOVEPLT MOVES MOVESYNC NEXT
NOT NOWAIT OFF OFFGAIN
ON ONGAIN OPEN1 OPEN2
OPENI1 OPENI2 OR PAI
PASS PAUSE PAYLOAD PLCDATAR1~8
PLCDATAW1~8 POINT PRINT PROGRAM
PULOUT RCYCLE READY REAL
REMAIN REMAINT REMARK RESET
RESTORE RESUME RETURN RIGHTY
SAVEEND SEGMENT SETGAIN SGN
SIN SMOOTH SPEED SQRT
STEP STOP SWITCH TAN
TASK THEN TID TIMER
TO TP TOOL TORQUE
TRANS WAIT WITH WORK

STE 80721
– 6-5 –

ROBOT LANGUAGE MANUALseries Robot Controller

Appendix C Contents of Library File (SCOL.LIB)

The contents of the library file included as standard on the system are shown below.
Details may vary slightly by the customer.

After the library file has been changed, be sure to execute the SELECT command again.
Otherwise, the change thus made will not be reflected on the currently selected
program.

‘(C) COPYRIGHT 2008 by TOSHIBA MACHINE CO., LTD.
‘ALL RIGHTS RESERVED.
‘TS3000 SCOL SUBPROGRAM LIBRARY

PROGRAM READY
MOVEA 3, 0
MOVEA 4, 0
MOVEA 2, 0
MOVEA 1, 0
MOVEA 5, 0

END

PROGRAM OPEN1 ’ OPEN HAND-1

WAIT MOTION > = 100
DOUT (203, –204)

END

PROGRAM CLOSE1 ’ CLOSE HAND-1

WAIT MOTION > = 100
DOUT (–203, 204)

END

PROGRAM OPENI1 ’ OPEN HAND-1 IMMEDIATE

DOUT (203, –204)
END

PROGRAM CLOSEI1 ’ CLOSE HAND-1 IMMEDIATE

DOUT (–203, 204)
END

STE 80721
– 6-6 –

ROBOT LANGUAGE MANUALseries Robot Controller

PROGRAM OPEN2 ’ OPEN HAND-2

WAIT MOTION > = 100
DOUT (201, –202)

END

PROGRAM CLOSE2 ’ CLOSE HAND-2

WAIT MOTION > = 100
DOUT (–201, 202)

END

PROGRAM OPENI2 ’ OPEN HAND-2 IMMEDIATE

DOUT (201, –202)
END

PROGRAM CLOSEI2 ’ CLOSE HAND-2 IMMEDIATE

DOUT (–201, 202)
END

PROGRAM FREELOAD ’ FREE PAYLOAD

PAYLOAD = (0, 0)
END

PROGRAM SETGAIN (J_0, J_1, J_2, J_3, J_4) ’ SET GAIN VARIABLE

WAIT MOTION>=100
GAIN = (J_0, J_1, J_2, J_3, J_4)
MOVE HERE WITH PASS=100
MOVE HERE

END

PROGRAM ONGAIN (J_1, J_2, J_3, J_4, J_5)

J_6 = 0
J_7 = 0
J_8 = 0
J_9 = 0
J_0 = 0
IF J_1 == 0 THEN J_6 = GAIN.1 ELSE J_6 = 1

STE 80721
– 6-7 –

ROBOT LANGUAGE MANUALseries Robot Controller

IF J_2 == 0 THEN J_7 = GAIN.2 ELSE J_7 = 1
IF J_3 == 0 THEN J_8 = GAIN.3 ELSE J_8 = 1
IF J_4 == 0 THEN J_9 = GAIN.4 ELSE J_9 = 1
IF J_5 == 0 THEN J_0 = GAIN.5 ELSE J_0 = 1
WAIT MOTION >= 100
GAIN = (J_6, J_7, J_8, J_9, J_0)
MOVE HERE WITH PASS = 100
MOVE HERE
RETURN

END

PROGRAM OFFGAIN (J_1,J_2,J_3,J_4,J_5)

J_6 = 0
J_7 = 0
J_8 = 0
J_9 = 0
J_0 = 0
IF J_1 == 0 THEN J_6 = GAIN.1 ELSE J_6 = 0
IF J_2 == 0 THEN J_7 = GAIN.2 ELSE J_7 = 0
IF J_3 == 0 THEN J_8 = GAIN.3 ELSE J_8 = 0
IF J_4 == 0 THEN J_9 = GAIN.4 ELSE J_9 = 0
IF J_5 == 0 THEN J_0 = GAIN.5 ELSE J_0 = 0
WAIT MOTION > = 100
GAIN = {J_6, J_7, J_8, J_9, J_0}
MOVE HERE WITH PASS = 100
MOVE HERE
RETURN

END

STE 80721
– 6-8 –

ROBOT LANGUAGE MANUALseries Robot Controller

Appendix D Domains and Ranges of Calculator Functions

Function Domain of arguments X, Y Range of result Z
SIN (X) (*) –1 ≤ Z ≤ 1
COS (X) (*) –1 ≤ Z ≤ 1
TAN (X) (*) (*)
ASIN (X) –1 ≤ X ≤ 1 –90° ≤ Z ≤ 90°
ACOS (X) –1 ≤ X ≤ 1 0 ≤ Z ≤ 180°
ATAN (X) (*) –90° < Z < 90°

ATAN2 (X, Y) Y ≠ 0 –180° < Z < 180°
SQRT (X) X ≥ 0 Z ≥ 0
ABS (X) (*) Z ≥ 0
SGN (X) (*) Z = –1, 0, 1
INT (X) (*) (*)

REAL (X) (*) (*)
LN (X) X > 0 (*)

X MOD Y Y ≠ 0 (*)
LOG10 (X) X > 0 (*)

EXP (X) (*) Z > 0

Comments
(*) refers to any number within the range that can be
handled by the controller.

STE 80721
– 6-9 –

ROBOT LANGUAGE MANUALseries Robot Controller

Appendix E How to Read Symbols

The meanings of keys and symbols used in the robot are as follows (alphanumeric
characters are omitted).

[F1] ~ [F5] : Function keys F1 to F5
[Esc] : Escape key
[INS] : Insert key
[DEL] : Delete key
[BS] : Backspace key
[{] : Left middle size brace
[}] : Right middle size brace
[[] : Left large size brace
[]] : Right large size brace
[Error] : Error indication key
[Utility] : Utility key
[!] : Exclamation mark
[;] : Semicolon
[:] : Colon
[’] : Apostrophe
[%] : Percent
[^] : Accent circumflex
[&] : Ampersand
[”] : Quotation marks (double quotation marks)
[(] : Left parentheses
[)] : Right parentheses
[Alt] : Alt key (alternative key)
[+] : Plus
[–] : Minus
[/] : Slash
[*] : Asterisk
[] : Space
[<] : Less than
[>] : Greater than

STE 80721
– 6-10 –

ROBOT LANGUAGE MANUALseries Robot Controller

[,] : Comma
[.] : Period
[?] : Question mark
[=] : Equal
[EXE] : Execution key
[↑] : (Up) cursor key
[↓] : (Down) cursor key
[←] : (Left) cursor key
[→] : (Right) cursor key

STE 80721
– 6-11 –

ROBOT LANGUAGE MANUALseries Robot Controller

Appendix F List of Compile Errors

 Compile error messages displayed on the teach pendant are tabled below.

Error No. Descriptions
200 The system is not ready for execution.
201 The working memory cannot be maintained.
202 The command is illegal.
205 Constant of the numerical value is illegal.
206 Constant of the character string is illegal.
207 A character that cannot be used has been found.
208 An error has been found in the expression of substitution.
209 An error has been found in the expression of program format.
210 An error has been found in the program format.
211 The GLOBAL variable is used for the GOTO label.
212 A vector variable cannot be initialized in the GLOBAL area.
213 The PROGRAM statement is not at the head of the line.
214 The position of the RETURN command is illegal.
215 The PROGRAM statement disagrees with the END statement.
216 The PROGRAM command has been declared in the DATA area.
217 The PROGRAM command has been declared in the GLOBAL area.
218 The GLOBAL statement is not at the head of the line.
219 The GLOBAL statement disagrees with the END statement.
220 The GLOBAL command has been declared in the PROGRAM area.
221 The GLOBAL command has been declared in the DATA area.
222 The number of condition monitor (ON~DO~) areas exceeds 50.
223 The [GOTO] label is defined repeatedly.
224 The DATA command has been declared in the PROGRAM area.
225 The DATA command has been declared in the GLOBAL area.
226 This command cannot be declared in other than the GLOBAL area.
227 The number of dimensions of array is illegal.
228 The IF statement, THEN statement and ELSE statement disagree with

each other.
229 The FOR statement disagrees with the NEXT statement.
230 The number of nesting of FOR~NEXT statements exceeds 127.
231 Multi-definition of the reserved word has been commanded.

STE 80721
– 6-12 –

ROBOT LANGUAGE MANUALseries Robot Controller

Error No. Descriptions

232 The monitoring condition is illegal.
233 The expression is illegal.
234 The operator is illegal.
235 The RCYCLE label can be used only in the MAIN function.
236 No vector variable can be used.
237 This command cannot be used for the vector variable.
238 Too many elements have been specified.
239 I/O instruction cannot be used for argument of function.
240 The parentheses have not been specified legally.
242 The RCYCLE label cannot be used only for the MAIN function.
243 No command of jump to the FOR loop area is allowed.
244 The label is not at the head of the line.
245 The specified label is absent.
246 No PROGRAM data is available.
247 No inequality can be used for the THEN statement or ELSE statement.
248 An error has been found in the reserved word.
249 The real argument and temporary argument of the function are not

identical.
250 More than ten arguments of function cannot be specified.
252 The GLOBAL variable cannot be used as the function name.
253 The reserved word cannot be used as the function name.
254 The functional declaration is illegal.
255 The name of function is already declared.
256 The specified function is absent.
257 The name of GLOBAL variable is not defined yet.
258 The GOTO label is used as the variable name.
259 This command has not been declared in the PROGRAM area.
260 The specified reserved word cannot be used for the GLOBAL or DATA

area.
261 Neither GLOBAL nor DATA variable can be substituted or redeclared.
262 The specified variable or constant cannot be used.
263 Neither logical operator nor inequality can be used.

STE 80721
– 6-13 –

ROBOT LANGUAGE MANUALseries Robot Controller

Error No. Descriptions

264 The type variable used is not common.
265 Under declaration. No END statement is present.
266 This command cannot be used in other than the head of the GLOBAL

block.
267 The number of backup variables is too many.
268 The total number of array variables that can be declared is 11,000 max.
269 The number of POINT teach points that can be specified is 1,500 max.
270 The number of teach points other than POINT, that can be specified is

500 max.
271 The number of signals is too many.
272 Double definition of PASS and SMOOTH is not allowed.

 * For details of Error No. 201. see the descriptions on the subsequent pages.

STE 80721
– 6-14 –

ROBOT LANGUAGE MANUALseries Robot Controller

 Detailed information on Compile Error No. 201 is given below.

No. Error contents Max. value Detailed descriptions
1 Token code conversion buffer 75500
2 GLOBAL variable 500 The maximum number of

GLOBAL variables defined is
500.

3 AUTO variable 600 The maximum number of AUTO
variables defined is 600.

4 Function 50 The maximum number of
functions is 50.

5 GOTO label 1000 The maximum number of GOTO
labels is 1,000.

6 Teaching of WORK coordinates 50 The maximum number of
WORK coordinates is 50.

7 Variable name saving buffer 10000
8 No. of program lines 6000 The total number of GLOBAL,

program and data blocks is
6,000 max. (including blank
lines).

9 Undefined variable information
table

100 Unused.

10 Array variable 100 The maximum number of array
variables defined is 100.

11 Declaring integer type GLOBAL
variable

100 The maximum number of
integer type GLOBAL variables
defined is 100.

12 Declaring real number type
GLOBAL variable

100 The maximum number of real
number type GLOBAL variables
defined is 100.

13 Declaring load type GLOBAL
variable

100 The maximum number of load
type GLOBAL variables defined
is 100.

14 Declaring coordinate type
GLOBAL variable

100 The maximum number of
coordinate type GLOBAL
variables defined is 100.

15 Declaring position type
GLOBAL variable

1500 The maximum number of
position type GLOBAL variables
defined is 1,500.

STE 80721
– 6-15 –

ROBOT LANGUAGE MANUALseries Robot Controller

No. Error contents Max. value Detailed descriptions
16 Declaring integer type AUTO

variable
500 The maximum number of

integer type AUTO variables
defined is 500.

17 Declaring real number type
AUTO variable

500 The maximum number of real
number type AUTO variables
defined is 500.

18 Declaring load type AUTO
variable

100 The maximum number of load
type AUTO variables defined is
100.

19 Declaring coordinate type AUTO
variable

100 The maximum number of
coordinate type AUTO variables
defined is 100.

20 Declaring position type AUTO
variable

1000 The maximum number of
position type AUTO variables
defined is 1,000.

21 Declaring undefined AUTO
variable

100

22 Information on destination to
which function is sent

300 The maximum number of
function calls is 300. (One (1)
function is called six (6) times
on the average.)

23 Information on source from
which function is called.

500 To be limited by No.22 above.

24 Information on argument of
function

100 The maximum number of
function arguments is 100.
(One (1) function can have two
(2) arguments on the average.)

25 Information on source from
which GOTO command is called

1000 The maximum number of GOTO
commands is 1,000.

26 Integer type AUTO constant 2000 The maximum number of
integer type constants used in
the program block is 2,000.

27 Real number type AUTO
constant

2000 The maximum number of real
number type constants used in
the program block is 2,000.

28 Load type AUTO constant 200 The maximum number of load
type constants used in the
program block is 100 (= 200 ÷
2).

STE 80721
– 6-16 –

ROBOT LANGUAGE MANUALseries Robot Controller

No. Error contents Max. value Detailed descriptions
29 Coordinate type AUTO constant 100 The maximum number of

coordinate type constants used
in the program block is 25 (=
100 ÷ 4).

30 Position type AUTO constant 2000 The maximum number of
position type constants used in
the program block is 333 (=
2000 ÷ 6).

31 Information on AUTO character
string

1000 The maximum number of
position type constants used in
the program is 1,000.

32 Integer type GLOBAL constant 100 The maximum number of
integer type constants used in
the GLOBAL and data blocks is
100.

33 Real number type GLOBAL
constant

100 The maximum number of real
number type constants used in
the GLOBAL and data blocks is
100.

34 Load type GLOBAL constant 100 The maximum number of load
type constants used in the
GLOBAL and data blocks is 50
(= 100 ÷ 2).

35 Coordinate type GLOBAL
constant

100 The maximum number of
coordinate type constants used
in the GLOBAL and data blocks
is 25 (= 100 ÷ 4).

36 Position type GLOBAL constant 10000 The maximum number of
position type constants used in
the GLOBAL and data blocks is
1666 (= 10000 ÷ 6).

37 No. of integer type GLOBAL
variables used

1000 The total number of integer type
GLOBAL variables used is
1,000 max.

38 No. of real number type
GLOBAL variables used

200 The total number of real number
type GLOBAL variables used is
200 max.

39 No. of load type GLOBAL
variables used

100 The total number of load type
GLOBAL variables used is 100
max.

STE 80721
– 6-17 –

ROBOT LANGUAGE MANUALseries Robot Controller

No. Error contents Max. value Detailed descriptions
40 No. of coordinate type GLOBAL

variables used
100 The total number of coordinate

type GLOBAL variables used is
100 max.

41 No. of position type GLOBAL
variables used

3000 The total number of position
type GLOBAL variables used is
3,000 max.

42 No. of integer type AUTO
variables used

1000 The total number of integer type
AUTO variables used is 1,000
max.

43 No. of real number type AUTO
variables used

1000 The total number of real number
type AUTO variables used is
1,000 max.

44 No. of load type AUTO variables
used

100 The total number of load type
AUTO variables used is 100
max.

45 No. of coordinate type AUTO
variables used

100 The total number of coordinate
type AUTO variables used is
100 max.

46 No. of position type AUTO
variables used

2000 The total number of position
type AUTO variables used is
2,000 max.

47 No. of AUTO undefined
variables used

100 Unused.

48 No. of GOTO source indexes 2000 To be limited by No.25.
49 No. of function source indexes 1000 To be limited by No.22.
50 No. of function argument

indexes
200 To be limited by No.24.

51 No. of array variables used 200 The maximum number of array
variables defined is 200.

52 No. of RESTORE commands 100 The maximum number of
RESTORE commands used is
100.

53 No. of array variable numerals
saved

17000 The total number of elements of
initialized array variables is
17,000 max. (In the position
type array of 2 × 3 dimensions,
it is 36 (= 2 × 3 × 6).

STE 80721
– 6-18 –

ROBOT LANGUAGE MANUALseries Robot Controller

No. Error contents Max. value Detailed descriptions
100 No. of indexes 5000 The total number of variable,

constant, function, label, etc.
used is 5,000.

101 No. of numerical data 25000 The total number of variable,
constant, function, label, etc.
defined is 25,000.

102 No. of codes created 399800
200 Interpreter execution

information area

 * If the library file (SCOL.LIB) exists, the number of data used there is also added.
 For the restrictions, see the restrictions on SCOL program as stated below.

STE 80721
– 6-19 –

ROBOT LANGUAGE MANUALseries Robot Controller

 The restrictions imposed on the SCOL program are tabled below.

Item Max. No.
per file

Remarks

No. of program lines 5,500
Function 49
Argument of function 10
No. of GOTO labels 999 However, the number of declared

labels and GOTO labels that can
be specified in one (1) function is
599 max.
(The same GOTO label is counted
as one (1) even if a plural number
of identical GOTO labels exist.)

Integer type GLOBAL variable 99
Real number type GLOBAL
variable

 99

Load type GLOBAL variable 48
Coordinate type GLOBAL
variable

 23

Position type GLOBAL variable 499
Integer type AUTO variable 499
Real number type AUTO variable 499
Load type AUTO variable 99
Coordinate type AUTO variable 99 However, up to 24 constants can

be set in the same file (i.e.,
program).

Position type AUTO variable 999 However, the number of variables
that can be set in one (1) function
is 599 max.
Up to 333 constants can be set in
the same file (i.e., program).

Information on AUTO variable
and label

 599
(per function)

This is the total number of AUTO
variables and GOTO labels
included in one (1) function, and is
not the limit value specified in one
(1) file.

Array variable 99
Total number of array variable
elements

 11,000

STE 80721
– 6-20 –

ROBOT LANGUAGE MANUALseries Robot Controller

Item Max. No.

per file
Remarks

No. of teach points of array
variable position type data
(POINT)

 1,500

No. of teach points of data other
than array variable position type
data (POINT)

 500

No. of nesting of FOR~NEXT 127
No. of condition monitors
(ON~DO~) specified
simultaneously

 10

No. of condition monitors
(ON~DO~) declared

 50

 * The SCOL.LIB file is also counted as one (1) file.

STE 80721
– 6-21 –

ROBOT LANGUAGE MANUALseries Robot Controller

Appendix G Dynamic Link Library

Appendix G–1 Palletizing Library

Library
Name

PALLET. LIB

Purpose Library of palletizing commands.
Up to three (3)-dimensional palletizing of (i × j × k) is possible by
teaching pallet home point, point i, point j, and point k.

Command
INITPLT (<Pallet number>, <i>, <j>, <k>)
The pallet specified by the pallet number is initialized as the three
(3)-dimensional pallet of "i × j × k".
 i : Number of elements between pallet home point and

point I
 j : Number of elements between pallet home point and

point J
 k : Number of elements between pallet home point and

point K
MOVEPLT (<Pallet number>, <Element number>, X, Y, Z, C)
The robot moves to the position which is specified by the pallet
number and element number and includes X, Y, Z and C offsets.

The X, Y, Z and C offset values cannot be omitted. (Unless offset
is effected, specify zero (0).)

STE 80721
– 6-22 –

ROBOT LANGUAGE MANUALseries Robot Controller

 [Descriptions of terms]

Ex. Pallet No. 1, 3-dimensional pallet of "5 × 4 × 2":

 Pallet number : The pallet number is assigned in turn,
starting with number "1" for pallets used in
appropriate program.

Teach point : The four (4) points above (i.e., home point,
point I, point J and point K) are the teach
points of this pallet.
The teach point name is predetermined as
"PLTP (<Pallet number>, 1 ~ 4)."

Element number : This number is automatically assigned for
pallet elements. For the pallet of "5 × 4 ×
2" as exemplified above, numbers 1 ~ 40
are assigned for respective elements.
The palletizing command allows the robot to
move a desired position by designating the
pallet number and element number.

 16
 11

 7 8 9 10
 2 3 4

 1 5

 6
 1

 36 37 38 39 40
 31 32 33 34 35

6 27 28 29 30
 22 23 24 25

 21

 2

Point K PLTP (1, 4)

Point J PLTP (1, 3)

Pallet home point
PLTP (1, 1)

STE 80721
– 6-23 –

ROBOT LANGUAGE MANUALseries Robot Controller

Library
Build-in

To use the "PALLET LIB", the following commands [1] and [2] are
required.
[1] In the GLOBAL area of the user program, library build-in

should be declared.
 LOADLIB PALLET.LIB
 ↑
 Library build-in declaration
[2] In the GLOBAL area of the user program, global variable

used in the library should be declared. The variable name
is predetermined as "PLTP".

 DIM PLTP (<Pallet number>, 7) AS POINT
 The pallet number should be any value larger than "1" and its

maximum value changes with the number of teach points
and number of arrays specified in the program.
Number "7" is a constant and is used to keep the variable
area used in the library.
This global variable is used to transfer the number of teach
points and calculated values to and from the PALLET LIB.

 GLOBAL
 LOADLIB PALLET.LIB [1] Library build-in declaration.
 DIM PLTP (2,7) AS POINT [2] Global variable declaration.
END
PROGRAM MAIN
 :
 (Omitted)
 :
END

STE 80721
– 6-24 –

ROBOT LANGUAGE MANUALseries Robot Controller

Analysis

and
advice

[1] Pallet
The pallet should be set horizontally in the X–Y plane.
(It should not be tilted.)

[2] Teaching and effective data
Teaching of four (4) points PLTP (n, 1) ~ PLTP (n, 4) is
performed. (n: Pallet number 1 ~ n)

 Pallet home point:
All coordinates of X, Y, Z, C and T can be used as the teach
data. The move position is calculated by adding a shift
value to this PLTP (n, 1) data.

 Point I PLTP (n, 2), point J PLTP (n, 3):
Only X and Y coordinates can be specified as the teach data.
They are used to figure out a shift value in the X and Y
directions.

 Point K PLTP (n, 4):
Only Z coordinate can be specified as the teach data. It is
used to figure out a shift value in the Z direction.

 For the one (1)-dimensional pallet, teaching of point J PLTP
(n, 3) and point K PLTP (n, 4) can be omitted.
For the two (2)-dimensional pallet, teaching of point K PLTP
(n, 4) can be omitted.
The teach point name cannot be changed.

 [3] When "PALLET.LIB" is read by the LOADLIB command,
variable names used in "PALLET.LIB" (INITPLT****,
MOVEPLT**** ; * any number) cannot be used in the user’s
program as the variable names or teach point names.

STE 80721
– 6-25 –

ROBOT LANGUAGE MANUALseries Robot Controller

 [4] Teaching method and element number of pallet

The element number is automatically assigned by the
INITPLT command. Even if the pallet is the same, the
element number differs with the teaching sequence.

 • One (1)-dimensional pallet

 • Two (2)-dimensional pallet

Pallet home point PLTP (n, 1) Point I PLTP (n, 2)

 1 2 3 4 5

n: Any pallet numberINITPLT (n, 5, 1, 1)

Point I PLTP (n, 2) Pallet home point PLTP (n, 1)

n: Any pallet number

 5 4 3 2 1

INITPLT (n, 5, 1, 1)

Pallet home point PLTP (n, 1)

Point J PLTP (n, 3) Point I PLTP (n, 2)

n: Any pallet number1 2 3 4

5 6 7 8

9 10 11 12

INITPLT (n, 4, 3, 1)

Point J PLTP (n, 3)

Pallet home point PLTP (n, 1)

Point I PLTP (n, 2)

n: Any pallet numberINITPLT (n, 3, 4, 1)

12 9 6 3

10 7 4 1

11 8 5 2

STE 80721
– 6-26 –

ROBOT LANGUAGE MANUALseries Robot Controller

 • Three (3)-dimensional pallet

Point I PLTP (n, 2)

Pallet home point PLTP (n, 1)

Point J PLTP (n, 3)

Point K PLTP (n, 4)

4 3 2 1

5 6 7 5

9 10 11 916 15 14 13

20 19 18 17

24 23 22 21

INITPLT (n, 4, 3, 2) n: Any pallet number

Sample
program

[1] When parts are supplied from the pallet to point A1:

Teach point PLTP (1, 1)
Teach point A1

Teach point PLTP (1, 2)

Teach point PLTP (1, 3)

STE 80721
– 6-27 –

ROBOT LANGUAGE MANUALseries Robot Controller

 GLOBAL

 LOADLIB PALLET.LIB
 DIM PLTP(1,7) AS POINT
END

PROGRAM PALLET
 INITPLT(1,5,4,1)
 OPEN1
 FOR I=1 TO 20 STEP 1
 MOVEPLT(1,I,0,0,50,0)
 MOVEPLT(1,I,0,0,0,0)
 CLOSE1
 MOVEPLT(1,I,0,0,50,0)
 MOVE A1+POINT(0,0,50)
 MOVE A1
 OPEN1
 MOVE A1+POINT(0,0,50)
 NEXT I
END

DATA
 POINT A1 = 650.000, –0.010, 187.140, 2.457,
0.000 / LEFTY
 POINT PLTP(1,1) = 203.346, 390.635, 94.252, 30.261,
0.000 / LEFTY
 POINT PLTP(1,2) = 357.548, 503.825, 94.252, 30.261,
0.000 / LEFTY
 POINT PLTP(1,3) = 337.299, 207.424, 94.252, 30.261,
0.000 / LEFTY
 POINT PLTP(1,4) = 337.299, 207.424, 94.252, 30.261,
0.000 / LEFTY
END

STE 80721
– 6-28 –

ROBOT LANGUAGE MANUALseries Robot Controller

The contents of PALLET.LIB standardly attached to the
system are shown below.

Contents of
PALLET.LIB

'***

'* TS3000 Dynamic Link Library *

'* *

'* file name : PALLET.LIB *

'* function : PALLETIZE *

'* command : INITPLT(PALLET_NO,I,J,K) *

'* : MOVEOLT(PALLET_NO,POZITION_NO,X,Y,Z,C *

'* *

'* Copyright(C) 2008 by TOSHIBA MACHINE CO.,LTD *

'*--*

'* 08/08/28New *

'* *

'**

PROGRAM INITPLT (INITPLTNO,INITPLTI,INITPLTJ,INITPLTK)

'

 INITPLT1P = PLTP(INITPLTNO,1)

 INITPLT2P = PLTP(INITPLTNO,2)

 INITPLT3P = PLTP(INITPLTNO,3)

 INITPLT4P = PLTP(INITPLTNO,4)

 PLTP(INITPLTNO,5) = POINT(INITPLTI,INITPLTJ,INITPLTK)

INITPLT010:

 IF INITPLTI < 1 THEN GOTO INITPLTERR

 IF INITPLTI < 2 THEN GOTO INITPLT015

 INITPLT5I = INITPLTI – 1

 INITPLTXX = (INITPLT2P.X – INITPLT1P.X) / INITPLT5I

 INITPLTXY = (INITPLT2P.Y – INITPLT1P.Y) / INITPLT5I

 GOTO INITPLT020

STE 80721
– 6-29 –

ROBOT LANGUAGE MANUALseries Robot Controller

INITPLT015:

 INITPLTXX = 0

 INITPLTXY = 0

INITPLT020:

 IF INITPLTJ < 1 THEN GOTO INITPLTERR

 IF INITPLTJ < 2 THEN GOTO INITPLT025

 INITPLT5J = INITPLTJ – 1

 INITPLTYX = (INITPLT3P.X – INITPLT1P.X) / INITPLT5J

 INITPLTYY = (INITPLT3P.Y – INITPLT1P.Y) / INITPLT5J

 GOTO INITPLT030

INITPLT025:

 INITPLTYX = 0

 INITPLTYY = 0

INITPLT030:

 IF INITPLTK < 1 THEN GOTO INITPLTERR

 IF INITPLTK < 2 THEN GOTO INITPLT035

 INITPLT5K = INITPLTK – 1

 INITPLTZZ = (INITPLT4P.Z – INITPLT1P.Z) / INITPLT5K

 GOTO INITPLT040

INITPLT035:

 INITPLTZZ = 0

INITPLT040:

 PLTP(INITPLTNO,6) =

POINT(INITPLTXX,INITPLTXY,INITPLTZZ)

 PLTP(INITPLTNO,7) =

POINT(INITPLTYX,INITPLTYY,INITPLTZZ)

 GOTO INITPLTEND

INITPLTERR:

 PRINT "ERR !! ELEMENT IS TOO SMALL."

 STOP

INITPLTEND:

END

'--

PROGRAM MOVEPLT

(MOVEPLTNO,MOVEPLTPSN,MOVEPLTX,MOVEPLTY,MOVEPLTZ,MO

VEPLTC)

STE 80721
– 6-30 –

ROBOT LANGUAGE MANUALseries Robot Controller

 MOVEPLTI = 0

 MOVEPLTJ = 0

 MOVEPLTK = 0

 MOVEPLTPS1 = MOVEPLTPSN –1

 MOVEPLT1P = PLTP(MOVEPLTNO,1)

 MOVEPLT5P = PLTP(MOVEPLTNO,5)

 MOVEPLT6P = PLTP(MOVEPLTNO,6)

 MOVEPLT7P = PLTP(MOVEPLTNO,7)

 MOVEPLTA = MOVEPLT5P.X * MOVEPLT5P.Y

 MOVEPLTB = MOVEPLTPS1 MOD MOVEPLTA

 MOVEPLTMAX = MOVEPLTA * MOVEPLT5P.Z

 IF 1 > MOVEPLTPSN THEN GOTO MOVEPLTER2

 IF MOVEPLTMAX < MOVEPLTPSN THEN GOTO MOVEPLTER3

 MOVEPLTI = MOVEPLTB MOD MOVEPLT5P.X

 MOVEPLTJ = INT(MOVEPLTB / MOVEPLT5P.X)

 MOVEPLTK = INT(MOVEPLTPS1 / MOVEPLTA)

 MOVEPLTXXX = MOVEPLTI * MOVEPLT6P.X + MOVEPLTJ *

MOVEPLT7P.X + MOVEPLTX

 MOVEPLTYYY = MOVEPLTI * MOVEPLT6P.Y + MOVEPLTJ *

MOVEPLT7P.Y + MOVEPLTY

 MOVEPLTZZZ = MOVEPLTK * MOVEPLT6P.Z + MOVEPLTZ

 MOVE MOVEPLT1P+

POINT(MOVEPLTXXX,MOVEPLTYYY,MOVEPLTZZZ,MOVEPLTC,0)

 GOTO MOVEPLTEND

MOVEPLTER2:

 PRINT "ERR !! ELEMENT NO. IS TOO SMALL."

 STOP

MOVEPLTER3:

 PRINT "ERR !! ELEMENT NO. IS TOO LARGE."

 STOP

MOVEPLTEND:

END

STE 80721
– 6-31 –

ROBOT LANGUAGE MANUALseries Robot Controller

Appendix H SCOL Program Language Executing Stop of Pre-Reading

The commands executing stop of pre-reading are listed below.

• PRINT
• WAIT
• ON to DO
• IGNORE
• DOUT
• DIN
• XIN (Option of conveyor)
• BCDIN
• BCDOUT
• PULOUT
• MOVE
• MOVEA
• MOVEI
• MOVES
• MOVEC
• MOVEJ
• DELAY
• LATCH
• SYNC (Option of conveyor)
• UNSYNC (Option of conveyor)
• STOP
• RETURN
• END

STE 80721
– 6-32 –

ROBOT LANGUAGE MANUALseries Robot Controller

STE 80721
– Z. –

	ROBOT LANGUAGE MANUAL
	Preface
	Table of Contents
	Section 1
	1.1 Robot Movement
	1.2 Robot Language
	1.3 Types of Commands

	Section 2
	2.1 Program Configuration
	2.1.1 Files
	2.1.2 Program
	2.1.3 Positional Data

	2.2 Character Set
	2.3 Identifiers
	2.4 Variables and Constants
	2.4.1 Scalar Data
	2.4.2 Vector Data
	2.4.3 System Variables
	2.4.4 System Constants

	2.5 Expressions
	2.5.1 Computational Expressions
	2.5.2 Logical Expressions

	2.6 Labels
	2.7 Remarks and Comments
	2.8 Programs
	2.8.1 Program Declaration
	2.8.2 Subprograms
	2.8.3 Library
	2.8.4 Multitask Processing
	2.8.5 Global Variable Definition
	2.8.6 Array Type Variable

	Section 3
	3.1 Command Explanations
	3.2 Explanation of Commands

	Section 4
	(1) Program to move robot back to its mechanical origins
	(2) Warm-up program
	(3) Robot motion
	(4) I/O signals
	(5) Interlock
	(6) Pick and place
	(7) Palletize
	(8) Creating a program for monitoring an insertion error
	(9) Program example of short-cut (PASS) movement

	Section 5
	5.1 Program Execution Timing
	5.1.1 Arm Movement and Signal I/O Timing
	5.1.2 Synchronization of Arm Movement and Program Execution
	5.1.3 DELAY Command and WAIT Command

	5.2 Things Not to Do When Programming
	5.2.1 Variables

	5.3 Things to Watch Out for When Writing a Program
	5.3.1 Types of Commands
	5.3.2 Robot Coordinate Systems
	5.3.3 Short-Cut Movement
	5.3.4 Robot Configuration
	5.3.5 Data Blocks
	5.3.6 Global Data Block
	5.3.7 Robot Movement Speed
	5.3.8 Robot Acceleration

	Appendix A List of Commands
	Appendix B List of Reserved Words
	Appendix C Contents of Library File (SCOL.LIB)
	Appendix D Domains and Ranges of Calculator Functions
	Appendix E How to Read Symbols
	Appendix F List of Compile Errors

